Prediction of Wind Power with Machine Learning Models

被引:19
|
作者
Karaman, Omer Ali [1 ]
机构
[1] Batman Univ, Vocat Sch, Dept Elect & Automat, TR-72100 Batman, Turkiye
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 20期
关键词
artificial neural network; convolutional neural network; recurrent neural network; long short-term memory; wind power forecasting;
D O I
10.3390/app132011455
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wind power is a vital power grid component, and wind power forecasting represents a challenging task. In this study, a series of multiobjective predictive models were created utilising a range of cutting-edge machine learning (ML) methodologies, namely, artificial neural networks (ANNs), recurrent neural networks (RNNs), convolutional neural networks, and long short-term memory (LSTM) networks. In this study, two independent data sets were combined and used to predict wind power. The first data set contained internal values such as wind speed (m/s), wind direction (degrees), theoretical power (kW), and active power (kW). The second data set was external values that contained the meteorological data set, which can affect the wind power forecast. The k-nearest neighbours (kNN) algorithm completed the missing data in the data set. The results showed that the LSTM, RNN, CNN, and ANN algorithms were powerful in forecasting wind power. Furthermore, the performance of these models was evaluated by incorporating statistical indicators of performance deviation to demonstrate the efficacy of the employed methodology effectively. Moreover, the performance of these models was evaluated by incorporating statistical indicators of performance deviation, including the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and mean square error (MSE) metrics to effectively demonstrate the efficacy of the employed methodology. When the metrics are examined, it can be said that ANN, RNN, CNN, and LSTM methods effectively forecast wind power. However, it can be said that the LSTM model is more successful in estimating the wind power with an R2 value of 0.9574, MAE of 0.0209, MSE of 0.0038, and RMSE of 0.0614.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Wind Power Prediction Based on Machine Learning and Deep Learning Models
    Tarek, Zahraa
    Shams, Mahmoud Y.
    Elshewey, Ahmed M.
    El-kenawy, El-Sayed M.
    Ibrahim, Abdelhameed
    Abdelhamid, Abdelaziz A.
    El-dosuky, Mohamed A.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 715 - 732
  • [2] Improvement of wind power prediction from meteorological characterization with machine learning models
    Sasser, Christiana
    Yu, Meilin
    Delgado, Ruben
    RENEWABLE ENERGY, 2022, 183 : 491 - 501
  • [3] Machine learning ensembles for wind power prediction
    Heinermann, Justin
    Kramer, Oliver
    RENEWABLE ENERGY, 2016, 89 : 671 - 679
  • [4] A Comprehensive Review of Wind Power Prediction Based on Machine Learning: Models, Applications, and Challenges
    Liu, Zongxu
    Guo, Hui
    Zhang, Yingshuai
    Zuo, Zongliang
    ENERGIES, 2025, 18 (02)
  • [5] Machine Learning Models for the Prediction of Wind Loads on Containerships
    Degiuli, Nastia
    Grlj, Carlo Giorgio
    Martic, Ivana
    Segota, Sandi Baressi
    Andelic, Nikola
    Majnaric, Darin
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2025, 13 (03)
  • [6] Wind Power Prediction Using Machine Learning and Deep Learning Algorithms
    Simsek, Ecem
    Gungor, Aysemuge
    Karavelioglu, Oyku
    Yerli, Mustafa Tolga
    Kuyumcuoglu, Nejat Goktug
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [7] Power prediction of wind turbine in the wake using hybrid physical process and machine learning models
    Zhou, Huanyu
    Qiu, Yingning
    Feng, Yanhui
    Liu, Jing
    RENEWABLE ENERGY, 2022, 198 : 568 - 586
  • [8] Improving wind power prediction with retraining machine learning algorithms
    Barque, Mariam
    Martin, Simon
    Vianin, Jeremie Etienne Norbert
    Genoud, Dominique
    Wannier, David
    2018 INTERNATIONAL WORKSHOP ON BIG DATA AND INFORMATION SECURITY (IWBIS), 2018, : 43 - 48
  • [9] Prediction of wind power density using machine learning algorithms
    Pozdnoukhov, Alexei
    Kanevski, Mikhail
    Timonin, Vadim
    PROCEEDINGS OF THE IAMG '07: GEOMATHEMATICS AND GIS ANALYSIS OF RESOURCES, ENVIRONMENT AND HAZARDS, 2007, : 620 - +
  • [10] An Empirical Study on Machine Learning Models for Wind Power Predictions
    Liu, Yiqian
    Zhang, Huajie
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 758 - 763