Ramanujan-type series for 1/π , revisited

被引:1
|
作者
Ye, Dongxi [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
关键词
Orbifold uniformizations; (1) forward slash (pi); Clausen-type transformations; ANALOGS;
D O I
10.4153/S0008439523000772
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we revisit Ramanujan-type series for 1/pi and show how they arise from genus zero subgroups of SL2(R) that are commensurable with SL2(Z) . As illustrations, we reproduce a striking formula of Ramanujan for 1/pi and a recent result of Cooper et al., as well as derive a new rational Ramanujan-type series for 1/pi . As a byproduct, we obtain a Clausen-type formula in some general sense and reproduce a Clausen-type quadratic transformation formula closely related to the aforementioned formula of Ramanujan.
引用
收藏
页码:350 / 368
页数:19
相关论文
共 50 条
  • [41] THE HARDY SPACE OF RAMANUJAN-TYPE ENTIRE FUNCTIONS
    Deniz, Erhan
    Caglar, Murat
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (01): : 71 - 81
  • [42] RAMANUJAN-TYPE CONGRUENCES FOR SEVERAL PARTITION FUNCTIONS
    Zhang, Wenlong
    Wang, Chun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (03) : 641 - 652
  • [43] Ramanujan-type congruences for overpartitions modulo 16
    Chen, William Y. C.
    Hou, Qing-Hu
    Sun, Lisa H.
    Zhang, Li
    RAMANUJAN JOURNAL, 2016, 40 (02): : 311 - 322
  • [44] Ramanujan-type congruences for overpartitions modulo 5
    Chen, William Y. C.
    Sun, Lisa H.
    Wang, Rong-Hua
    Zhang, Li
    JOURNAL OF NUMBER THEORY, 2015, 148 : 62 - 72
  • [45] Some Ramanujan-type circular summation formulas
    Ji-Ke Ge
    Qiu-Ming Luo
    Advances in Difference Equations, 2020
  • [46] Relations among Ramanujan-type congruences I
    Raum, Martin
    ADVANCES IN MATHEMATICS, 2022, 409
  • [47] Explicit evaluation of a family of Ramanujan-type integrals
    Pan, Ende
    Wang, Xiyu
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2025,
  • [48] Finding Modular Functions for Ramanujan-Type Identities
    William Y. C. Chen
    Julia Q. D. Du
    Jack C. D. Zhao
    Annals of Combinatorics, 2019, 23 : 613 - 657
  • [49] Some Ramanujan-type circular summation formulas
    Ge, Ji-Ke
    Luo, Qiu-Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [50] Ramanujan-type congruences for certain generating functions
    Shi-Chao Chen
    Lithuanian Mathematical Journal, 2013, 53 : 381 - 390