On Multivariate Distribution of n-Dimensional Brownian Diffusion Particle in the Fluid

被引:2
|
作者
El-Hadidy, Mohamed Abd Allah [1 ,2 ]
Alzulaibani, Alaa Awad [2 ]
机构
[1] Tanta Univ, Fac Sci, Math Dept, Tanta, Egypt
[2] Taibah Univ, Fac Sci, Math & Stat Dept, Yanbu, Saudi Arabia
关键词
n-dimensional Brownian motion; statistical properties; diffusion coefficient; particle's distribution; DIFFERENTIAL MOBILITY ANALYZER; TRANSPORT;
D O I
10.1080/23324309.2023.2254951
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work presents the multivariate distribution of an n-dimensional independent Brownian particle's position at any time t in the fluid. To know the diffusion properties of particle in a fluid, we study some statistical properties of this distribution. Besides that, we study the estimated value of the diffusion coefficient to present more information about the particle's motion in the fluid.
引用
收藏
页码:314 / 322
页数:9
相关论文
共 50 条
  • [31] n-dimensional plane symmetric solution with perfect fluid source
    Zhang, Hongsheng
    Noh, Hyerim
    PHYSICS LETTERS B, 2009, 671 (4-5) : 428 - 434
  • [32] The difference between n-dimensional regularization and n-dimensional reduction in QCD
    Smith, J
    van Neerven, WL
    EUROPEAN PHYSICAL JOURNAL C, 2005, 40 (02): : 199 - 203
  • [33] The Hausdorff Measure on n-Dimensional Manifolds in ℝm and n-Dimensional Variations
    Potepun A.V.
    Journal of Mathematical Sciences, 2019, 243 (6) : 917 - 921
  • [34] The difference between n-dimensional regularization and n-dimensional reduction in QCD
    J. Smith
    W. L. van Neerven
    The European Physical Journal C - Particles and Fields, 2005, 40 : 199 - 203
  • [35] An invariance principle related to a process which generalizes the N-dimensional Brownian motion.
    Gallardo, U
    Godefroy, L
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (06) : 487 - 492
  • [36] N-dimensional Gregory-Bezier for N-dimensional cellular complexes
    Thery, S
    Bechmann, D
    Bertrand, Y
    WSCG '2001: SHORT COMMUNICATIONS AND POSTERS, 2001, : SH16 - SH23
  • [37] N-dimensional homotopy
    Aronszajn, N
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1936, 202 : 1475 - 1478
  • [38] The n-dimensional hypervolume
    Blonder, Benjamin
    Lamanna, Christine
    Violle, Cyrille
    Enquist, Brian J.
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2014, 23 (05): : 595 - 609
  • [39] N-DIMENSIONAL VOLUME
    EISENSTEIN, M
    KLAMKIN, MS
    SIAM REVIEW, 1959, 1 (01) : 69 - 70
  • [40] ON N-DIMENSIONAL IMPEDANCES
    ZEHEB, E
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1983, 11 (01) : 106 - 108