On Multivariate Distribution of n-Dimensional Brownian Diffusion Particle in the Fluid

被引:2
|
作者
El-Hadidy, Mohamed Abd Allah [1 ,2 ]
Alzulaibani, Alaa Awad [2 ]
机构
[1] Tanta Univ, Fac Sci, Math Dept, Tanta, Egypt
[2] Taibah Univ, Fac Sci, Math & Stat Dept, Yanbu, Saudi Arabia
关键词
n-dimensional Brownian motion; statistical properties; diffusion coefficient; particle's distribution; DIFFERENTIAL MOBILITY ANALYZER; TRANSPORT;
D O I
10.1080/23324309.2023.2254951
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work presents the multivariate distribution of an n-dimensional independent Brownian particle's position at any time t in the fluid. To know the diffusion properties of particle in a fluid, we study some statistical properties of this distribution. Besides that, we study the estimated value of the diffusion coefficient to present more information about the particle's motion in the fluid.
引用
收藏
页码:314 / 322
页数:9
相关论文
共 50 条
  • [21] Long-term influence of fluid inertia on the diffusion of a Brownian particle
    Pesce, Giuseppe
    Volpe, Giorgio
    Volpe, Giovanni
    Sasso, Antonio
    PHYSICAL REVIEW E, 2014, 90 (04):
  • [22] SUBDIVISIONS OF N-DIMENSIONAL SPACES AND N-DIMENSIONAL GENERALIZED MAPS
    LIENHARDT, P
    PROCEEDINGS OF THE FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, 1989, : 228 - 236
  • [23] Equations of motion for a charged particle in n-dimensional magnetic field
    Florek, W
    Thomas, M
    ACTA PHYSICA POLONICA A, 2000, 97 (05) : 935 - 938
  • [24] Equations of motion for a charged particle in n-dimensional magnetic field
    Florek, W.
    Thomas, M.
    Journal of Engineering and Applied Science, 2000, 97 (05): : 935 - 938
  • [25] A Neumann problem for a diffusion equation with n-dimensional fractional Laplacian
    Martin P. Arciga-Alejandre
    Jorge Sanchez-Ortiz
    Francisco J. Ariza-Hernandez
    Eduard Garcia-Murcia
    Advances in Difference Equations, 2021
  • [26] The duality of a single particle with an n-dimensional internal degree of freedom
    Jia Ai-Ai
    Huang Jie-Hui
    Feng Wei
    Zhang Tian-Cai
    Zhu Shi-Yao
    CHINESE PHYSICS B, 2014, 23 (03)
  • [27] The duality of a single particle with an n-dimensional internal degree of freedom
    贾爱爱
    黄接辉
    冯伟
    张天才
    朱诗尧
    Chinese Physics B, 2014, 23 (03) : 135 - 142
  • [28] On the N-dimensional stationary drift-diffusion semiconductor equations
    Fan, JS
    Wu, HW
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (01) : 127 - 135
  • [29] A Neumann problem for a diffusion equation with n-dimensional fractional Laplacian
    Arciga-Alejandre, Martin P.
    Sanchez-Ortiz, Jorge
    Ariza-Hernandez, Francisco J.
    Garcia-Murcia, Eduard
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [30] Fractional diffusion equation for an n-dimensional correlated Levy walk
    Taylor-King, Jake P.
    Klages, Rainer
    Fedotov, Sergei
    Van Gorder, Robert A.
    PHYSICAL REVIEW E, 2016, 94 (01)