First-Order Graph Trend Filtering for Sparse Hyperspectral Unmixing

被引:1
|
作者
Song, Fu-Xin [1 ]
Deng, Shi-Wen [2 ]
机构
[1] Harbin Normal Univ, Coll Geog Sci, Harbin 150025, Peoples R China
[2] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph difference operator (GDO); graph learning; graph trend filtering (GTF); sparse unmixing (SU); spatial information; SPATIAL REGULARIZATION;
D O I
10.1109/LGRS.2023.3307891
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In semisupervised unmixing, mixed pixels in a hyperspectral image (HIS) can be decomposed into corresponding abundances based on the known endmember library. The HSI contains important spatial information about the land cover, which can help enhance the performance of hyperspectral unmixing (HU). In this letter, we proposed first-order graph trend filtering (GTF) for sparse unmixing (SU) to explore and utilize spatial information more effectively and accurately. The proposed method adaptively constructs the first-order graph difference operator (GDO) from the original data and then uses double reweighted $\ell _{1}$ -norm regularization to promote the sparsity of the abundances. The results of experiments on simulated and real datasets show that the proposed algorithm can more accurately utilize the spatial structure and outperform competing methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Collaborative Sparse Regression for Hyperspectral Unmixing
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01): : 341 - 354
  • [32] Reweighted Sparse Regression for Hyperspectral Unmixing
    Zheng, Cheng Yong
    Li, Hong
    Wang, Qiong
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01): : 479 - 488
  • [33] Robust Sparse Unmixing for Hyperspectral Imagery
    Wang, Dan
    Shi, Zhenwei
    Cui, Xinrui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (03): : 1348 - 1359
  • [34] PARALLEL SPARSE UNMIXING OF HYPERSPECTRAL DATA
    Rodriguez Alves, Jose M.
    Nascimento, Jose M. P.
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Silva, Vitor
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1446 - 1449
  • [35] Spatial-Spectral Graph Regularized Sparse Nonnegative Matrix Factorization Hyperspectral Unmixing
    Lei, Lin
    Zhang, Hao
    Zhang, Shaoquan
    Zhang, Ningyuan
    Deng, Chengzhi
    Li, Fan
    Wang, Shengqian
    EARTH AND SPACE: FROM INFRARED TO TERAHERTZ, ESIT 2022, 2023, 12505
  • [36] Deciding first-order properties for sparse graphs
    Dvorak, Zdenek
    Kral', Daniel
    Thomas, Robin
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 133 - 142
  • [37] First-order methods for sparse covariance selection
    D'Aspremont, Alexandre
    Banerjee, Onureena
    El Ghaoui, Laurent
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (01) : 56 - 66
  • [38] Sparse Dictionary Learning for Blind Hyperspectral Unmixing
    Liu, Yang
    Guo, Yi
    Li, Feng
    Xin, Lei
    Huang, Puming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (04) : 578 - 582
  • [39] Parallel Method for Sparse Semisupervised Hyperspectral Unmixing
    Nascimento, Jose M. P.
    Rodriguez Alves, Jose M.
    Plaza, Antonio
    Silva, Vitor
    Bioucas-Dias, Jose M.
    HIGH-PERFORMANCE COMPUTING IN REMOTE SENSING III, 2013, 8895
  • [40] Verifying Graph Programs with First-Order Logic
    Wulandari, Gia S.
    Plump, Detlef
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2020, (330): : 181 - 200