First-Order Graph Trend Filtering for Sparse Hyperspectral Unmixing

被引:1
|
作者
Song, Fu-Xin [1 ]
Deng, Shi-Wen [2 ]
机构
[1] Harbin Normal Univ, Coll Geog Sci, Harbin 150025, Peoples R China
[2] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph difference operator (GDO); graph learning; graph trend filtering (GTF); sparse unmixing (SU); spatial information; SPATIAL REGULARIZATION;
D O I
10.1109/LGRS.2023.3307891
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In semisupervised unmixing, mixed pixels in a hyperspectral image (HIS) can be decomposed into corresponding abundances based on the known endmember library. The HSI contains important spatial information about the land cover, which can help enhance the performance of hyperspectral unmixing (HU). In this letter, we proposed first-order graph trend filtering (GTF) for sparse unmixing (SU) to explore and utilize spatial information more effectively and accurately. The proposed method adaptively constructs the first-order graph difference operator (GDO) from the original data and then uses double reweighted $\ell _{1}$ -norm regularization to promote the sparsity of the abundances. The results of experiments on simulated and real datasets show that the proposed algorithm can more accurately utilize the spatial structure and outperform competing methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] HYPERSPECTRAL UNMIXING WITH SPARSE GROUP LASSO
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3586 - 3589
  • [22] Approximate Sparse Regularized Hyperspectral Unmixing
    Deng, Chengzhi
    Zhang, Yaning
    Wang, Shengqian
    Zhang, Shaoquan
    Tian, Wei
    Wu, Zhaoming
    Hu, Saifeng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [23] Structured Sparse Method for Hyperspectral Unmixing
    Zhu, Feiyun
    Wang, Ying
    Xiang, Shiming
    Fan, Bin
    Pan, Chunhong
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 88 : 101 - 118
  • [24] FIRST-ORDER PROPERTIES AND ORIENTED GRAPH
    BLANC, G
    JOURNAL OF SYMBOLIC LOGIC, 1977, 42 (01) : 129 - 129
  • [25] SPARSE AND LOW RANK HYPERSPECTRAL UNMIXING
    Sigurdsson, Jakob
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 229 - 232
  • [26] COLLABORATIVE SPARSE UNMIXING OF HYPERSPECTRAL DATA
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7488 - 7491
  • [27] Deblurring and Sparse Unmixing for Hyperspectral Images
    Zhao, Xi-Le
    Wang, Fan
    Huang, Ting-Zhu
    Ng, Michael K.
    Plemmons, Robert J.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (07): : 4045 - 4058
  • [28] On the first-order edge tenacity of a graph
    Bafandeh, Bahareh
    Moazzami, Dara
    Ghodousian, Amin
    DISCRETE APPLIED MATHEMATICS, 2016, 205 : 8 - 15
  • [29] RECENT DEVELOPMENTS IN SPARSE HYPERSPECTRAL UNMIXING
    Iordache, Marian-Daniel
    Plaza, Antonio
    Bioucas-Dias, Jose
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1281 - 1284
  • [30] ROBUST SPARSE UNMIXING OF HYPERSPECTRAL DATA
    Ma, Yang
    Li, Chang
    Ma, Jiayi
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6193 - 6196