Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability

被引:159
作者
Lin, Yan [1 ,2 ,3 ]
Wang, Tuo [1 ,2 ,3 ,4 ,5 ]
Zhang, Lili [1 ,2 ,3 ]
Zhang, Gong [1 ,2 ,3 ]
Li, Lulu [1 ,2 ,3 ]
Chang, Qingfeng [1 ,2 ,3 ]
Pang, Zifan [1 ,2 ,3 ]
Gao, Hui [1 ,2 ,3 ]
Huang, Kai [1 ,2 ,4 ,5 ]
Zhang, Peng [1 ,2 ,3 ,4 ,5 ]
Zhao, Zhi-Jian [1 ,2 ,3 ]
Pei, Chunlei [1 ,2 ,3 ]
Gong, Jinlong [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Minist Educ, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[4] Joint Sch Natl Univ Singapore, Fuzhou 350207, Peoples R China
[5] Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; CU; COPPER; ELECTRODES; CATALYSTS; ELECTROLYSIS; INSIGHTS;
D O I
10.1038/s41467-023-39351-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mechanism of how interfacial wettability impacts the CO2 electcgq Herein, the authors describe the design and realization of controllable equilibrium of kinetic controlled *CO and *H to reveal its contribution to ethylene and ethanol pathways. The mechanism of how interfacial wettability impacts the CO2 electroreduction pathways to ethylene and ethanol remains unclear. This paper describes the design and realization of controllable equilibrium of kinetic-controlled *CO and *H via modifying alkanethiols with different alkyl chain lengths to reveal its contribution to ethylene and ethanol pathways. Characterization and simulation reveal that the mass transport of CO2 and H2O is related with interfacial wettability, which may result in the variation of kinetic-controlled *CO and *H ratio, which affects ethylene and ethanol pathways. Through modulating the hydrophilic interface to superhydrophobic interface, the reaction limitation shifts from insufficient supply of kinetic-controlled *CO to that of *H. The ethanol to ethylene ratio can be continuously tailored in a wide range from 0.9 to 1.92, with remarkable Faradaic efficiencies toward ethanol and multi-carbon (C2+) products up to 53.7% and 86.1%, respectively. A C2+ Faradaic efficiency of 80.3% can be achieved with a high C2+ partial current density of 321 mA cm(-2), which is among the highest selectivity at such current densities.
引用
收藏
页数:12
相关论文
共 56 条
[1]   Electrochemical CO2 Reduction: Classifying Cu Facets [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
ACS CATALYSIS, 2019, 9 (09) :7894-7899
[2]   Electrochemical CO2 Reduction: A Classification Problem [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
CHEMPHYSCHEM, 2017, 18 (22) :3266-3273
[3]   Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction [J].
Bagger, Alexander ;
Ju, Wen ;
Varela, Ana Sofia ;
Strasser, Peter ;
Rossmeisl, Jan .
CATALYSIS TODAY, 2017, 288 :74-78
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions [J].
Burdyny, Thomas ;
Smith, Wilson A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (05) :1442-1453
[6]   Mechanistic Insights for Low-Overpotential Electroreduction of CO2 to CO on Copper Nanowires [J].
Cao, Liang ;
Raciti, David ;
Li, Chenyang ;
Livi, Kenneth J. T. ;
Rottmann, Paul F. ;
Hemker, Kevin J. ;
Mueller, Tim ;
Wang, Chao .
ACS CATALYSIS, 2017, 7 (12) :8578-8587
[7]   Cu-Ag Tandem Catalysts for High-Rate CO2 Electrolysis toward Multicarbons [J].
Chen, Chubai ;
Li, Yifan ;
Yu, Sunmoon ;
Louisia, Sheena ;
Jin, Jianbo ;
Li, Mufan ;
Ross, Michael B. ;
Yang, Peidong .
JOULE, 2020, 4 (08) :1688-1699
[8]   Highly Selective Production of Ethylene by the Electroreduction of Carbon Monoxide [J].
Chen, Ruixue ;
Su, Hai-Yan ;
Liu, Deyu ;
Huang, Rui ;
Meng, Xianguang ;
Cui, Xiaoju ;
Tian, Zhong-Qun ;
Zhang, Dong H. ;
Deng, Dehui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) :154-160
[9]   Grain-Boundary-Rich Copper for Efficient Solar-Driven Electrochemical CO2 Reduction to Ethylene and Ethanol [J].
Chen, Zhiqiang ;
Wang, Tuo ;
Liu, Bin ;
Cheng, Dongfang ;
Hu, Congling ;
Zhang, Gong ;
Zhu, Wenjin ;
Wang, Huaiyuan ;
Zhao, Zhi-Jian ;
Gong, Jinlong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (15) :6878-6883
[10]   A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials [J].
Choi, Chungseok ;
Cheng, Tao ;
Espinosa, Michelle Flores ;
Fei, Huilong ;
Duan, Xiangfeng ;
Goddard, William A., III ;
Huang, Yu .
ADVANCED MATERIALS, 2019, 31 (06)