A Bochev-Dohrmann-Gunzburger stabilized method for Maxwell eigenproblem

被引:1
作者
Du, Zhijie [1 ]
Duan, Huoyuan [1 ]
Wang, Can [1 ]
Zhang, Qiuyu [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Babuska-Osborn spectral theory; Bochev-Dohrmann-Gunzburger stabilization; edge element; Maxwell eigenproblem; mixed finite element method; MIXED FINITE-ELEMENTS; APPROXIMATIONS; H(DIV);
D O I
10.1002/num.23026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A stabilized mixed finite element method is proposed for solving the Maxwell eigenproblem in terms of the electric field and the multiplier. Using the Bochev-Dohrmann-Gunzburger stabilization, we introduce some ad hoc stabilizing parameters for stabilizing the kernel-coercivity of the electric field and for stabilizing the inf-sup condition of the multiplier. We show that the stabilized mixed method is stable and convergent, with applications to some lowest-order edge elements on affine rectangular and cuboid mesh and on nonaffine quadrilateral mesh which fail in the classical methods. In particular, we prove the uniform convergence for guaranteeing spectral-correct and spurious-free discrete eigenmodes from the Babuska-Osborn spectral theory for compact operators. Numerical results have illustrated the performance of the stabilized method and confirmed the theoretical results obtained.
引用
收藏
页码:3811 / 3846
页数:36
相关论文
共 23 条