Interlacing Property of a Family of Generating Polynomials over Dyck Paths

被引:0
作者
Wang, Bo [1 ]
Zhang, Candice X. T. [1 ]
机构
[1] Nankai Univ, Ctr Combinator, LPMC, Tianjin 300071, Peoples R China
基金
美国国家科学基金会;
关键词
STATISTICS; SEQUENCES;
D O I
10.37236/12375
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the study of a tantalizing symmetry on Catalan objects, B & oacute;na et al. introduced a family of polynomials {W (n,k)(x)}n >= k >= 0 defined by<br /> W-n,W-k(x) = (k)& sum;(m=0 )w(n,k),(m)x(m),<br /> where w(n,k,m) counts the number of Dyck paths of semilength n with k occurrences of UD and m occurrences of UUD. They proposed two conjectures on the interlacing property of these polynomials, one of which states that {W-n,W-k(x)}n >= k is a Sturm sequence for any fixed k >= 1, and the other states that {W-n,W-k(x)}1 <= k <= n is a Sturm-unimodal sequence for any fixed n >= 1. In this paper, we obtain certain recurrence relations for W-n,W-k(x), and further confirm their conjectures.
引用
收藏
页数:9
相关论文
共 18 条
  • [1] Bóna M, 2022, Arxiv, DOI arXiv:2212.10586
  • [2] Branden P., 2015, Handbook of Enumerative Combinatorics, P437
  • [3] Brenti F., 1994, Jerusalem combinatorics '93, V178, P7189
  • [4] Callan D., 2017, Generalized Narayana numbers
  • [5] Czabarka É, 2015, ELECTRON J COMB, V22
  • [6] 2 COMBINATORIAL STATISTICS ON DYCK PATHS
    DENISE, A
    SIMION, R
    [J]. DISCRETE MATHEMATICS, 1995, 137 (1-3) : 155 - 176
  • [7] Dyck path enumeration
    Deutsch, E
    [J]. DISCRETE MATHEMATICS, 1999, 204 (1-3) : 167 - 202
  • [8] Refined Restricted Inversion Sequences
    Lin, Zhicong
    Kim, Dongsu
    [J]. ANNALS OF COMBINATORICS, 2021, 25 (04) : 849 - 875
  • [9] A unified approach to polynomial sequences with only real zeros
    Liu, Lily L.
    Wang, Yi
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2007, 38 (04) : 542 - 560
  • [10] Mansour T, 2006, J INTEGER SEQ, V9