Development and use of machine learning algorithms in vaccine target selection

被引:23
作者
Bravi, Barbara [1 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
基金
英国科研创新办公室;
关键词
ARTIFICIAL-INTELLIGENCE; ANTIGENIC DETERMINANTS; REVERSE VACCINOLOGY; EPITOPE PREDICTION; CELL; MHC; ANTIBODY; SPECIFICITY; DESIGN; PEPTIDES;
D O I
10.1038/s41541-023-00795-8
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Computer-aided discovery of vaccine targets has become a cornerstone of rational vaccine design. In this article, I discuss how Machine Learning (ML) can inform and guide key computational steps in rational vaccine design concerned with the identification of B and T cell epitopes and correlates of protection. I provide examples of ML models, as well as types of data and predictions for which they are built. I argue that interpretable ML has the potential to improve the identification of immunogens also as a tool for scientific discovery, by helping elucidate the molecular processes underlying vaccine-induced immune responses. I outline the limitations and challenges in terms of data availability and method development that need to be addressed to bridge the gap between advances in ML predictions and their translational application to vaccine design.
引用
收藏
页数:14
相关论文
共 204 条
  • [91] Computational and artificial intelligence-based methods for antibody development
    Kim, Jisun
    McFee, Matthew
    Fang, Qiao
    Abdin, Osama
    Kim, Philip M.
    [J]. TRENDS IN PHARMACOLOGICAL SCIENCES, 2023, 44 (03) : 175 - 189
  • [92] A SEMIEMPIRICAL METHOD FOR PREDICTION OF ANTIGENIC DETERMINANTS ON PROTEIN ANTIGENS
    KOLASKAR, AS
    TONGAONKAR, PC
    [J]. FEBS LETTERS, 1990, 276 (1-2): : 172 - 174
  • [93] Combined assessment of MHC binding and antigen abundance improves T cell epitope predictions
    Kosaloglu-Yalcin, Zeynep
    Lee, Jenny
    Greenbaum, Jason
    Schoenberger, Stephen P.
    Miller, Aaron
    Kim, Young J.
    Sette, Alessandro
    Nielsen, Morten
    Peters, Bjoern
    [J]. ISCIENCE, 2022, 25 (02)
  • [94] The ClusPro web server for protein-protein docking
    Kozakov, Dima
    Hall, David R.
    Xia, Bing
    Porter, Kathryn A.
    Padhorny, Dzmitry
    Yueh, Christine
    Beglov, Dmitri
    Vajda, Sandor
    [J]. NATURE PROTOCOLS, 2017, 12 (02) : 255 - 278
  • [95] Neoantigen-reactive CD8+ T cells affect clinical outcome of adoptive cell therapy with tumor-infiltrating lymphocytes in melanoma
    Kristensen, Nikolaj Pagh
    Heeke, Christina
    Tvingsholm, Siri A.
    Borch, Annie
    Draghi, Arianna
    Crowther, Michael D.
    Carri, Ibel
    Munk, Kamilla K.
    Holm, Jeppe Sejero
    Bjerregaard, Anne-Mette
    Bentzen, Amalie Kai
    Marquard, Andrea M.
    Szallasi, Zoltan
    McGranahan, Nicholas
    Andersen, Rikke
    Nielsen, Morten
    Jonsson, Goran B.
    Donia, Marco
    Svane, Inge Marie
    Hadrup, Sine Reker
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2022, 132 (02)
  • [96] SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates
    Kyriakidis, Nikolaos C.
    Lopez-Cortes, Andres
    Vasconez Gonzalez, Eduardo
    Barreto Grimaldos, Alejandra
    Ortiz Prado, Esteban
    [J]. NPJ VACCINES, 2021, 6 (01)
  • [97] Improving MHC class I antigen-processing predictions using representation learning and cleavage site-specific kernels
    Lawrence, Patrick J.
    Ning, Xia
    [J]. CELL REPORTS METHODS, 2022, 2 (09):
  • [98] Predicting Cross-Reactivity and Antigen Specificity of T Cell Receptors
    Lee, Chloe H.
    Salio, Mariolina
    Napolitani, Giorgio
    Ogg, Graham
    Simmons, Alison
    Koohy, Hashem
    [J]. FRONTIERS IN IMMUNOLOGY, 2020, 11
  • [99] Deciphering the language of antibodies using self-supervised learning
    Leem, Jinwoo
    Mitchell, Laura S.
    Farmery, James H. R.
    Barton, Justin
    Galson, Jacob D.
    [J]. PATTERNS, 2022, 3 (07):
  • [100] STCRDab: the structural T-cell receptor database
    Leem, Jinwoo
    de Oliveira, Saulo H. P.
    Krawczyk, Konrad
    Deane, Charlotte M.
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) : D406 - D412