Development and use of machine learning algorithms in vaccine target selection

被引:23
作者
Bravi, Barbara [1 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
基金
英国科研创新办公室;
关键词
ARTIFICIAL-INTELLIGENCE; ANTIGENIC DETERMINANTS; REVERSE VACCINOLOGY; EPITOPE PREDICTION; CELL; MHC; ANTIBODY; SPECIFICITY; DESIGN; PEPTIDES;
D O I
10.1038/s41541-023-00795-8
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Computer-aided discovery of vaccine targets has become a cornerstone of rational vaccine design. In this article, I discuss how Machine Learning (ML) can inform and guide key computational steps in rational vaccine design concerned with the identification of B and T cell epitopes and correlates of protection. I provide examples of ML models, as well as types of data and predictions for which they are built. I argue that interpretable ML has the potential to improve the identification of immunogens also as a tool for scientific discovery, by helping elucidate the molecular processes underlying vaccine-induced immune responses. I outline the limitations and challenges in terms of data availability and method development that need to be addressed to bridge the gap between advances in ML predictions and their translational application to vaccine design.
引用
收藏
页数:14
相关论文
共 204 条
  • [1] ABlooper: fast accurate antibody CDR loop structure prediction with accuracy estimation
    Abanades, Brennan
    Georges, Guy
    Bujotzek, Alexander
    Deane, Charlotte M.
    [J]. BIOINFORMATICS, 2022, 38 (07) : 1877 - 1880
  • [2] Abdollahi N., 2023, arXiv, DOI 10.48550/arXiv.2302.03590
  • [3] Defining HLA-II Ligand Processing and Binding Rules with Mass Spectrometry Enhances Cancer Epitope Prediction
    Abelin, Jennifer G.
    Harjanto, Dewi
    Malloy, Matthew
    Suri, Prerna
    Colson, Tyler
    Goulding, Scott P.
    Creech, Amanda L.
    Serrano, Lia R.
    Nasir, Gibran
    Nasrullah, Yusuf
    McGann, Christopher D.
    Velez, Diana
    Ting, Ying S.
    Poran, Asaf
    Rothenberg, Daniel A.
    Chhangawala, Sagar
    Rubinsteyn, Alex
    Hammerbacher, Jeff
    Gaynor, Richard B.
    Fritsch, Edward F.
    Greshock, Joel
    Oslund, Rob C.
    Barthelme, Dominik
    Addona, Terri A.
    Arleta, Christina M.
    Rooney, Michael S.
    [J]. IMMUNITY, 2019, 51 (04) : 766 - +
  • [4] Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction
    Abelin, Jennifer G.
    Keskin, Derin B.
    Sarkizova, Siranush
    Hartigan, Christina R.
    Zhang, Wandi
    Sidney, John
    Stevens, Jonathan
    Lane, William
    Zhang, Guang Lan
    Eisenhaure, Thomas M.
    Clauser, Karl R.
    Hacohen, Nir
    Rooney, Michael S.
    Carr, Steven A.
    Wu, Catherine J.
    [J]. IMMUNITY, 2017, 46 (02) : 315 - 326
  • [5] In silico proof of principle of machine learning-based antibody design at unconstrained scale
    Akbar, Rahmad
    Robert, Philippe A.
    Weber, Cedric R.
    Widrich, Michael
    Frank, Robert
    Pavlovic, Milena
    Scheffer, Lonneke
    Chernigovskaya, Maria
    Snapkov, Igor
    Slabodkin, Andrei
    Mehta, Brij Bhushan
    Miho, Enkelejda
    Lund-Johansen, Fridtjof
    Andersen, Jan Terje
    Hochreiter, Sepp
    Haff, Ingrid Hobaek
    Klambauer, Guenter
    Sandve, Geir Kjetil
    Greiff, Victor
    [J]. MABS, 2022, 14 (01)
  • [6] proABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking
    Ambrosetti, Francesco
    Olsen, Tobias Hegelund
    Olimpieri, Pier Paolo
    Jimenez-Garcia, Brian
    Milanetti, Edoardo
    Marcatilli, Paolo
    Bonvin, Alexandre M. J. J.
    [J]. BIOINFORMATICS, 2020, 36 (20) : 5107 - 5108
  • [7] Modeling Antibody-Antigen Complexes by Information-Driven Docking
    Ambrosetti, Francesco
    Jimenez-Garcia, Brian
    Roel-Touris, Jorge
    Bonvin, Alexandre M. J. J.
    [J]. STRUCTURE, 2020, 28 (01) : 119 - +
  • [8] Gapped sequence alignment using artificial neural networks: application to the MHC class I system
    Andreatta, Massimo
    Nielsen, Morten
    [J]. BIOINFORMATICS, 2016, 32 (04) : 511 - 517
  • [9] Serverless Prediction of Peptide Properties with Recurrent Neural Networks
    Ansari, Mehrad
    White, Andrew D.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (08) : 2546 - 2553
  • [10] Artificial Intelligence Applied to clinical trials: opportunities and challenges
    Askin, Scott
    Burkhalter, Denis
    Calado, Gilda
    El Dakrouni, Samar
    [J]. HEALTH AND TECHNOLOGY, 2023, 13 (02) : 203 - 213