Generalized Deconvolution Estimation by Multiwavelets

被引:0
作者
Wu, Cong [1 ]
机构
[1] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
基金
中国国家自然科学基金;
关键词
Density estimation; generalized deconvolution model; point-wise risk; multiwavelet; local regularization condition; KERNEL DENSITY-ESTIMATION; MULTIVARIATE DENSITY; ORACLE INEQUALITIES; ADAPTIVE ESTIMATION; OPTIMAL RATES; CONVERGENCE; BOUNDS;
D O I
10.1007/s00025-023-01924-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the generalized deconvolution model, this paper constructs the corresponding multiwavelet estimator, and studies its optimal estimation of the point-wise risk under the local regularization condition. Firstly, the corresponding multiwavelet estimator is constructed by combining the noise information; secondly, the upper bound of point-wise risk between density function and corresponding multiwavelet estimator in local regular space is studied; then, the adaptive multiwavelet estimator is constructed by using data-driven method and its convergence order is studied; finally, the optimality of multiwavelet estimator and data-driven estimator is discussed.
引用
收藏
页数:17
相关论文
共 39 条
  • [1] The adaptive rate of convergence in a problem of pointwise density estimation
    Butucea, C
    [J]. STATISTICS & PROBABILITY LETTERS, 2000, 47 (01) : 85 - 90
  • [2] Butucea C., 2001, ESAIM-PROBAB STAT, V5, P1, DOI [10.1051/ps:2001100, DOI 10.1051/PS:2001100]
  • [3] OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY
    CARROLL, RJ
    HALL, P
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) : 1184 - 1186
  • [4] Copula Density Estimation Using Multiwavelets Based on the Multiresolution Analysis
    Chatrabgoun, O.
    Parham, G.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (09) : 3350 - 3372
  • [5] Anisotropic adaptive kernel deconvolution
    Comte, F.
    Lacour, C.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (02): : 569 - 609
  • [6] On minimax wavelet estimators
    Delyon, B
    Juditsky, A
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (03) : 215 - 228
  • [7] CONSISTENT DECONVOLUTION IN DENSITY-ESTIMATION
    DEVROYE, L
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (02): : 235 - 239
  • [8] Donoho DL, 1996, ANN STAT, V24, P508
  • [9] DOUKHAN P, 1990, CR ACAD SCI I-MATH, V310, P425
  • [10] Fan J., 1999, ANN, V27