Humic Acid Modulates Ionic Homeostasis, Osmolytes Content, and Antioxidant Defense to Improve Salt Tolerance in Rice

被引:17
|
作者
Abu-Ria, Mohamed [1 ]
Shukry, Wafaa [1 ]
Abo-Hamed, Samy [1 ]
Albaqami, Mohammed [2 ]
Almuqadam, Lolwah [3 ]
Ibraheem, Farag [1 ,4 ]
机构
[1] Mansoura Univ, Fac Sci, Bot Dept, Mansoura 35516, Egypt
[2] King Saud Univ, Coll Sci, Bot & Microbiol Dept, Riyadh 11451, Saudi Arabia
[3] Imam Abdul Rahman Bin Faisal Univ, Coll Sci, Biol Dept, Damam 31441, Saudi Arabia
[4] Umm Al Qura Univ, Al Qunfodah Univ Coll, Biol & Chem Dept, Al Qunfodah 21912, Saudi Arabia
来源
PLANTS-BASEL | 2023年 / 12卷 / 09期
关键词
rice; salinity; humic acid priming; antioxidants; osmolytes; ALLEVIATE SALINITY STRESS; ENZYME-ACTIVITY; SOIL-SALINITY; PLANT; GROWTH; SUBSTANCES; L; METABOLISM; POTASSIUM; FRACTIONS;
D O I
10.3390/plants12091834
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The sensitivity of rice plants to salinity is a major challenge for rice growth and productivity in the salt-affected lands. Priming rice seeds in biostimulants with stress-alleviating potential is an effective strategy to improve salinity tolerance in rice. However, the mechanisms of action of these compounds are not fully understood. Herein, the impact of priming rice seeds (cv. Giza 179) with 100 mg/L of humic acid on growth and its underlaying physiological processes under increased magnitudes of salinity (EC = 0.55, 3.40, 6.77, 8.00 mS/cm) during the critical reproductive stage was investigated. Our results indicated that salinity significantly reduced Giza 179 growth indices, which were associated with the accumulation of toxic levels of Na+ in shoots and roots, a reduction in the K+ and K+/Na+ ratio in shoots and roots, induced buildup of malondialdehyde, electrolyte leakage, and an accumulation of total soluble sugars, sucrose, proline, and enzymic and non-enzymic antioxidants. Humic acid application significantly increased growth of the Giza 179 plants under non-saline conditions. It also substantially enhanced growth of the salinity-stressed Giza 179 plants even at 8.00 mS/cm. Such humic acid ameliorating effects were associated with maintaining ionic homeostasis, appropriate osmolytes content, and an efficient antioxidant defense system. Our results highlight the potential role of humic acid in enhancing salt tolerance in Giza 179.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice
    El-Shabrawi, Hattem
    Kumar, Bhumesh
    Kaul, Tanushri
    Reddy, Malireddy K.
    Singla-Pareek, Sneh L.
    Sopory, Sudhir K.
    PROTOPLASMA, 2010, 245 (1-4) : 85 - 96
  • [2] Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice
    Hattem El-Shabrawi
    Bhumesh Kumar
    Tanushri Kaul
    Malireddy K. Reddy
    Sneh L. Singla-Pareek
    Sudhir K. Sopory
    Protoplasma, 2010, 245 : 85 - 96
  • [3] Exogenous Gallic Acid Confers Salt Tolerance in Rice Seedlings: Modulation of Ion Homeostasis, Osmoregulation, Antioxidant Defense, and Methylglyoxal Detoxification Systems
    Rahman, Anisur
    Alam, Mazhar Ul
    Hossain, Md. Shahadat
    Mahmud, Jubayer Al
    Nahar, Kamrun
    Fujita, Masayuki
    Hasanuzzaman, Mirza
    AGRONOMY-BASEL, 2023, 13 (01):
  • [4] Potassium and Humic Acid Synergistically Increase Salt Tolerance and Nutrient Uptake in Contrasting Wheat Genotypes through Ionic Homeostasis and Activation of Antioxidant Enzymes
    Abbas, Ghulam
    Rehman, Sadia
    Siddiqui, Manzer H.
    Ali, Hayssam M.
    Farooq, Muhammad Ansar
    Chen, Yinglong
    PLANTS-BASEL, 2022, 11 (03):
  • [5] Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems
    Rahman, Anisur
    Hossain, Md Shahadat
    Jubayer-Al Mahmud
    Nahar, Kamrun
    Hasanuzzaman, Mirza
    Fujita, Masayuki
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2016, 22 (03) : 291 - 306
  • [6] Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems
    Anisur Rahman
    Md. Shahadat Hossain
    Jubayer-Al Mahmud
    Kamrun Nahar
    Mirza Hasanuzzaman
    Masayuki Fujita
    Physiology and Molecular Biology of Plants, 2016, 22 : 291 - 306
  • [7] Foliage applied proline induces salt tolerance in chili genotypes by regulating photosynthetic attributes, ionic homeostasis, and antioxidant defense mechanisms
    Butt, Madiha
    Sattar, Abdul
    Abbas, Tahira
    Sher, Ahmad
    Ijaz, Muhammad
    Ul-Allah, Sami
    Shaheen, Muhammad Rashid
    Kaleem, Fawad
    HORTICULTURE ENVIRONMENT AND BIOTECHNOLOGY, 2020, 61 (04) : 693 - 702
  • [8] Foliage applied proline induces salt tolerance in chili genotypes by regulating photosynthetic attributes, ionic homeostasis, and antioxidant defense mechanisms
    Madiha Butt
    Abdul Sattar
    Tahira Abbas
    Ahmad Sher
    Muhammad Ijaz
    Sami Ul-Allah
    Muhammad Rashid Shaheen
    Fawad Kaleem
    Horticulture, Environment, and Biotechnology, 2020, 61 : 693 - 702
  • [9] Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation, and antioxidant defense
    Patade, Vikas Yadav
    Bhargava, Sujata
    Suprasanna, Penna
    JOURNAL OF PLANT INTERACTIONS, 2011, 6 (04) : 275 - 282
  • [10] Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance
    Demiral, T
    Türkan, I
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2005, 53 (03) : 247 - 257