Semiparametric efficient G-estimation with invalid instrumental variables

被引:4
作者
Sun, B. [1 ]
Liu, Z. [2 ]
Tchetgen, E. J. Tchetgen [3 ]
机构
[1] Natl Univ Singapore, Dept Stat & Data Sci, 6 Sci Dr 2, Singapore 117546, Singapore
[2] Columbia Univ, Dept Biostat, 722 West 168th St, New York, NY 10032 USA
[3] Univ Penn, Wharton Sch, Dept Stat & Data Sci, 265 South 37th St, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
Causal inference; G-estimation; Instrumental variable; Multiple robustness property; Semiparametric theory; Unmeasured confounding; MENDELIAN RANDOMIZATION; GENERALIZED-METHOD; CONSISTENT ESTIMATION; MULTIPLE ROBUSTNESS; CAUSAL INFERENCE; REGRESSION; IDENTIFICATION; MODELS; SELECTION; MOMENTS;
D O I
10.1093/biomet/asad011
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The instrumental variable method is widely used in the health and social sciences for identification and estimation of causal effects in the presence of potential unmeasured confounding. To improve efficiency, multiple instruments are routinely used, raising concerns about bias due to possible violation of the instrumental variable assumptions. To address such concerns, we introduce a new class of G-estimators that are guaranteed to remain consistent and asymptotically normal for the causal effect of interest provided that a set of at least ? out of K candidate instruments are valid, for ? = K set by the analyst ex ante without necessarily knowing the identities of the valid and invalid instruments. We provide formal semiparametric efficiency theory supporting our results. Simulation studies and applications to UK Biobank data demonstrate the superior empirical performance of the proposed estimators compared with competing methods.
引用
收藏
页码:953 / 971
页数:20
相关论文
共 83 条
[71]   The GENIUS Approach to Robust Mendelian Randomization Inference [J].
Tchetgen, Eric Tchetgen ;
Sun, BaoLuo ;
Walter, Stefan .
STATISTICAL SCIENCE, 2021, 36 (03) :443-464
[73]   Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank [J].
Tyrrell, Jessica ;
Jones, Samuel E. ;
Beaumont, Robin ;
Astley, Christina M. ;
Lovell, Rebecca ;
Yaghootkar, Hanieh ;
Tuke, Marcus ;
Ruth, Katherine S. ;
Freathy, Rachel M. ;
Hirschhorn, Joel N. ;
Wood, Andrew R. ;
Murray, Anna ;
Weedon, Michael N. ;
Frayling, Timothy M. .
BMJ-BRITISH MEDICAL JOURNAL, 2016, 352
[74]   Causal inference with generalized structural mean models [J].
Vansteelandt, S ;
Goetghebeur, E .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :817-835
[75]   Improving the robustness and efficiency of covariate-adjusted linear instrumental variable estimators [J].
Vansteelandt, Stijn ;
Didelez, Vanessa .
SCANDINAVIAN JOURNAL OF STATISTICS, 2018, 45 (04) :941-961
[76]   Multiply Robust Inference for Statistical Interactions [J].
Vansteelandt, Stijn ;
Vanderweele, Tyler J. ;
Tchetgen, Eric J. ;
Robins, James M. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (484) :1693-1704
[77]   Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables [J].
Wang, Linbo ;
Tchetgen, Eric Tchetgen .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (03) :531-550
[78]   On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments [J].
Windmeijer, Frank ;
Farbmacher, Helmut ;
Davies, Neil ;
Smith, George Davey .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (527) :1339-1350
[79]  
Wooldridge JM, 2010, ECONOMETRIC ANALYSIS OF CROSS SECTION AND PANEL DATA, 2ND EDITION, P3
[80]  
Ye T., ARXIV