On the Range of Certain ASH Algebras of Real Rank Zero

被引:0
作者
An, Qingnan [1 ]
Liu, Zhichao [2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Classification; AD algebra; Range; Reduction; C-ASTERISK-ALGEBRAS; INDUCTIVE LIMITS; CLASSIFICATION; TORSION; THEOREM;
D O I
10.1007/s11401-023-0014-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors consider the range of a certain class of ASH algebras in [An, Q., Elliott, G. A., Li, Z. and Liu, Z., The classification of certain ASH C*-algebras of real rank zero, J. Topol. Anal., 14(1), 2022, 183-202], which is under the scheme of the Elliott program in the setting of real rank zero C*-algebras. As a reduction theorem, they prove that all these ASH algebras are still the AD algebras studied in [Dadarlat, M. and Loring, T. A., Classifying C*-algebras via ordered, mod-p K-theory, Math. Ann., 305, 1996, 601-616].
引用
收藏
页码:279 / 288
页数:10
相关论文
共 26 条
[1]  
Elliott GA, 2016, Arxiv, DOI arXiv:1507.03437
[2]   The classification of certain ASH C*-algebras of real rank zero [J].
An, Qingnan ;
Elliott, George A. ;
Li, Zhiqiang ;
Liu, Zhichao .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2022, 14 (01) :183-202
[3]   ON THE KK-THEORY OF ELLIOTT-THOMSEN ALGEBRAS [J].
An, Qingnan ;
Elliott, George A. .
JOURNAL OF OPERATOR THEORY, 2017, 78 (02) :435-472
[4]  
Blackadar B, 2016, MATH SCAND, V118, P291
[5]  
BRATTELI O, 1972, T AM MATH SOC, V171, P195
[6]   A classification result for approximately homogeneous C*-algebras of real rank zero [J].
Dadarlat, M ;
Gong, G .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1997, 7 (04) :646-711
[7]   Classifying C*-algebras via ordered, mod-p K-theory [J].
Dadarlat, M ;
Loring, TA .
MATHEMATISCHE ANNALEN, 1996, 305 (04) :601-616
[8]  
Dixmier J., 1967, Journal of Functional Analysis, V1, P182, DOI DOI 10.1016/0022-1236(67)90031-6
[9]   DIMENSION GROUPS AND THEIR AFFINE REPRESENTATIONS [J].
EFFROS, EG ;
HANDELMAN, DE ;
SHEN, CL .
AMERICAN JOURNAL OF MATHEMATICS, 1980, 102 (02) :385-407
[10]   A complete invariant for AD algebras with real rank zero and bounded torsion in K-1 [J].
Eilers, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 139 (02) :325-348