Membrane Cascade Type of ⟪Continuous Membrane Column⟫ for Power Plant Post-Combustion Carbon Dioxide Capture Part 1: Simulation of the Binary Gas Mixture Separation

被引:5
作者
Atlaskin, Artem A. [1 ]
Petukhov, Anton N. [1 ,2 ]
Stepakova, Anna N. [1 ]
Tsivkovsky, Nikita S. [1 ]
Kryuchkov, Sergey S. [1 ]
Smorodin, Kirill A. [1 ]
Moiseenko, Irina S. [1 ]
Atlaskina, Maria E. [1 ]
Suvorov, Sergey S. [2 ]
Stepanova, Ekaterina A. [2 ]
Vorotyntsev, Ilya V. [1 ]
机构
[1] Mendeleev Univ Chem Technol Russia, Lab Elect Grade Subst Technol, Moscow 125047, Russia
[2] Natl Res Lobachevsky State Univ Nizhny Novgorod, Chem Engn Lab, Nizhnii Novgorod 603022, Russia
基金
俄罗斯科学基金会;
关键词
flue gases; carbon dioxide; membrane; cascade; process design; CO2; CAPTURE; PURIFICATION; TECHNOLOGY; IMPURITIES;
D O I
10.3390/membranes13030270
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The present paper deals with the complex study of CO2 capture from combined heat power plant flue gases using the efficient technological design of a membrane cascade type of << Continuous Membrane Column >> for binary gas mixture separation. In contrast to well-known multi-step or multi-stage process designs, the cascade type of separation unit provides several advantages. Here, the separation process is implemented in it by creating two counter current flows. In one of them is depleted by the high-permeable component in a continuous mode, meanwhile the other one is enriched. Taking into account that the circulating flows rate overcomes the withdrawn one, there is a multiplicative increase in separation efficiency. A comprehensive study of CO2 capture using the membrane cascade type of << Continuous Membrane Column >> includes the determination of the optimal membrane material characteristics, the sensitivity study of the process, and a feasibility evaluation. It was clearly demonstrated that the proposed process achieves efficient CO2 capture, which meets the modern requirements in terms of the CO2 content (>= 95 mol.%), recovery rate (>= 90%), and residual CO2 concentration (<= 2 mol.%). Moreover, it was observed that it is possible to process CO2 with a purity of up to 99.8 mol.% at the same recovery rate. This enables the use of this specific process design in CO2 pretreatment operations for the production of high-purity carbon dioxide.
引用
收藏
页数:13
相关论文
共 33 条
[11]   Post-combustion CO2 capture and separation in flue gas based on hydrate technology : A review [J].
Cheng, Zucheng ;
Li, Shaohua ;
Liu, Yu ;
Zhang, Yi ;
Ling, Zheng ;
Yang, Mingjun ;
Jiang, Lanlan ;
Song, Yongchen .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 154
[12]   Can CO2 and Renewable Carbon Be Primary Resources for Sustainable Fuels and Chemicals? [J].
Hasan, M. M. Faruque ;
Rossi, Liane M. ;
Debecker, Damien P. ;
Leonard, Kevin C. ;
Li, Zhenxing ;
Makhubela, Banothile C. E. ;
Zhao, Chuan ;
Kleij, Arjan .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (37) :12427-12430
[13]   Insight and Comparison of Energy-efficient Membrane Processes for CO2 Capture from Flue Gases in Power Plant and Energy-intensive Industry [J].
He, Xuezhong ;
Chen, Danlin ;
Liang, Zhicong ;
Yang, Feng .
CARBON CAPTURE SCIENCE & TECHNOLOGY, 2022, 2
[14]   New facile process evaluation for membrane-based CO2 capture: Apparent selectivity model [J].
Jung, Wonho ;
Lee, Jinwon ;
Lee, Jong Suk .
CHEMICAL ENGINEERING JOURNAL, 2023, 460
[15]   Removing CO2 from Xenon anaesthesia circuits using an amino-acid ionic liquid solution in a membrane contactor [J].
Martins, C. F. ;
Neves, L. A. ;
Chagas, R. ;
Ferreira, L. M. ;
Coelhoso, I. M. ;
Crespo, J. G. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 275
[16]   Power plant post-combustion carbon dioxide capture: An opportunity for membranes [J].
Merkel, Tim C. ;
Lin, Haiqing ;
Wei, Xiaotong ;
Baker, Richard .
JOURNAL OF MEMBRANE SCIENCE, 2010, 359 (1-2) :126-139
[17]   Techno-Economic Analysis of Amine-based CO2 Capture Technology: Hunter Plant Case Study [J].
Panja, Palash ;
McPherson, Brian ;
Deo, Milind .
CARBON CAPTURE SCIENCE & TECHNOLOGY, 2022, 3
[18]   CO2 capture process through hybrid gas hydrate-membrane technology: Complex approach for the transition from theory to practice [J].
Petukhov, Anton N. ;
Atlaskin, Artem A. ;
Kudryavtseva, Maria S. ;
Kryuchkov, Sergey S. ;
Shablykin, Dmitry N. ;
Stepanova, Ekaterina A. ;
Smorodin, Kirill A. ;
V. Kazarina, Olga ;
Trubyanov, Maxim M. ;
Atlaskina, Maria E. ;
Petukhova, Anastasia N. ;
Markov, Artem N. ;
V. Vorotyntsev, Andrey ;
Mochalov, Leonid A. ;
V. Vorotynstev, Ilya .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (04)
[19]   A hybrid batch distillation/membrane process for high purification part 2: Removing of heavy impurities from xenon extracted from natural gas [J].
Petukhov, Anton N. ;
Shablykin, Dmitry N. ;
Trubyanov, Maxim M. ;
Atlaskin, Artem A. ;
Zarubin, Dmitriy M. ;
V. Vorotyntsev, Andrey ;
Stepanova, Ekaterina A. ;
Smorodin, Kirill A. ;
V. Kazarina, Olga ;
Petukhova, Anastasia N. ;
Vorotyntsev, Vladimir M. ;
Vorotynstev, Ilya V. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 294
[20]   A highly-efficient hybrid technique-Membrane-assisted gas absorption for ammonia recovery after the Haber-Bosch process [J].
Petukhov, Anton N. ;
Atlaskin, Artem A. ;
Kryuchkov, Sergey S. ;
Smorodin, Kirill A. ;
Zarubin, Dmitriy M. ;
Petukhova, Anastasia N. ;
Atlaskina, Maria E. ;
Nyuchev, Alexandr V. ;
Vorotyntsev, Andrey V. ;
Trubyanov, Maxim M. ;
Vorotyntsev, Ilya V. ;
Vorotynstev, Vladimir M. .
CHEMICAL ENGINEERING JOURNAL, 2021, 421