TBK1 promotes thyroid cancer progress by activating the PI3K/Akt/mTOR signaling pathway

被引:9
|
作者
Jiang, Qiuli [1 ]
Guan, Yingying [1 ]
Zheng, Jingmei [1 ]
Lu, Huadong [1 ]
机构
[1] Fudan Univ, Zhongshan Hosp, Dept Pathol, Xiamen Branch, Xiamen 361015, Fujian, Peoples R China
关键词
MAZ; migration; proliferation; TBK1; thyroid cancer; EPITHELIAL-MESENCHYMAL TRANSITION; CELL-PROLIFERATION; BREAST-CANCER; CARCINOMA; EXPRESSION; MIGRATION; PROTEIN; GROWTH;
D O I
10.1002/iid3.796
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
IntroductionThyroid cancer has received increasing attention; however, its detailed pathogenesis and pathological processes remain unclear. We investigated the role of TANK-binding kinase 1 (TBK1) in the progression of thyroid cancer. MethodsThe expression of TBK1 in thyroid cancer and normal control tissues was analyzed using real-time quantitative polymerase chain reaction. The function of TBK1 on thyroid cancer cells was detected using MTT, colony formation, wound healing, and Transwell assays. The xenograft assay was carried out to check on the role of TBK1 in thyroid cancer. ResultsTBK1 was highly expressed in thyroid tumors. High expression of TBK1 raised viability, proliferation, migration, and invasion of thyroid cancer cells. Gene set enrichment analysis revealed that TBK1 activated the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway. In addition, Myc-associated zinc finger protein (MAZ) was overexpressed in thyroid cancer and transcriptionally activated BK1. MAZ silence reversed the effects of TBK1 overexpression on thyroid cancer progression. Cotransfection with MAZ small-interfering RNA(siRNA) and TBK1 siRNA did not strengthen the inhibitory effect of TBK1 silencing on the thyroid cancer cells. The xenograft tumor assay showed that TBK1 short hairpinRNA inhibited tumor growth. ConclusionMAZ silencing inhibited tumor progress of thyroid cancer cells, whereas this inhibitory effect was reversed by TBK1 overexpression.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Levobupivacaine inhibits proliferation and promotes apoptosis of breast cancer cells by suppressing the PI3K/Akt/mTOR signalling pathway
    Kwakye, Akosua Kotaa
    Kampo, Sylvanus
    Lv, Jiaxin
    Ramzan, Muhammad Noman
    Richard, Seidu A.
    Falagan, Aglais Arredondo
    Agudogo, Jerry
    Atito-Narh, Evans
    Yan, Qiu
    Wen, Qing-Ping
    BMC RESEARCH NOTES, 2020, 13 (01)
  • [22] Netrin-1 promotes gastric cancer cell proliferation and invasion via the receptor neogenin through PI3K/AKT signaling pathway
    Yin, Kai
    Wang, Linjun
    Zhang, Xuan
    He, Zhongyuan
    Xia, Yiwen
    Xu, Jianghao
    Wei, Song
    Li, Bowen
    Li, Zheng
    Sun, Guangli
    Li, Qing
    Xu, Hao
    Xu, Zekuan
    ONCOTARGET, 2017, 8 (31) : 51177 - 51189
  • [23] VCP interaction with HMGB1 promotes hepatocellular carcinoma progression by activating the PI3K/AKT/mTOR pathway
    Pu, Zhangya
    Duda, Dan G.
    Zhu, Yuanyuan
    Pei, Siya
    Wang, Xiaofang
    Huang, Yan
    Yi, Panpan
    Huang, Zebing
    Peng, Fang
    Hu, Xingwang
    Fan, Xuegong
    JOURNAL OF TRANSLATIONAL MEDICINE, 2022, 20 (01)
  • [24] PI3K/AKT/mTOR pathway promotes progestin resistance in endometrial cancer cells by inhibition of autophagy
    Liu, Hua
    Zhang, Liqin
    Zhang, Xuyan
    Cui, Zhumei
    ONCOTARGETS AND THERAPY, 2017, 10 : 2865 - 2871
  • [25] Targeted disruption of PI3K/Akt/mTOR signaling pathway, via PI3K inhibitors, promotes growth inhibitory effects in oral cancer cells
    Aggarwal, Sadhna
    John, Sarah
    Sapra, Leena
    Sharma, Suresh C.
    Das, Satya N.
    CANCER CHEMOTHERAPY AND PHARMACOLOGY, 2019, 83 (03) : 451 - 461
  • [26] The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review
    Sun, K.
    Luo, J.
    Guo, J.
    Yao, X.
    Jing, X.
    Guo, F.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 (04) : 400 - 409
  • [27] CLEC5A promotes the proliferation of gastric cancer cells by activating the PI3K/AKT/mTOR pathway
    Wang, Quhui
    Shi, Muqi
    Sun, Shiqi
    Zhou, Quan
    Ding, Li
    Jiang, Chenxia
    Bian, Tingting
    Jia, Feng
    Liu, Yifei
    Qin, Jun
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 524 (03) : 656 - 662
  • [28] Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in cancer
    Akbarzadeh, Maryam
    Mihanfar, Ainaz
    Akbarzadeh, Shabnam
    Yousefi, Bahman
    Majidinia, Maryam
    LIFE SCIENCES, 2021, 285
  • [29] SRC-3/TRAF4 facilitates ovarian cancer development by activating the PI3K/AKT signaling pathway
    Wang, Ying
    Luo, Xia
    Wu, Nayiyuan
    Liao, Qianjin
    Wang, Jing
    MEDICAL ONCOLOGY, 2023, 40 (02)
  • [30] CDK12 Promotes the Proliferation, Migration, and Angiogenesis of Gastric Carcinoma via Activating the PI3K/AKT/mTOR Signaling Pathway
    Li-zhen Gao
    Jun-qing Wang
    Jun-lin Chen
    Xue-lin Zhang
    Man-man Zhang
    Su-ling Wang
    Chen Zhao
    Applied Biochemistry and Biotechnology, 2023, 195 : 6913 - 6926