Research on State-of-Health Estimation for Lithium-Ion Batteries Based on the Charging Phase

被引:2
|
作者
Du, Changqing [1 ,2 ,3 ]
Qi, Rui [1 ,2 ,3 ]
Ren, Zhong [1 ,2 ,3 ]
Xiao, Di [1 ,2 ,3 ]
机构
[1] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
[2] Guangdong Lab, Foshan Xianhu Lab Adv Energy Sci & Technol, Foshan 528200, Peoples R China
[3] Wuhan Univ Technol, Hubei Res Ctr New Energy & Intelligent Connected V, Wuhan 430070, Peoples R China
关键词
lithium-ion battery; state of health; time series neural network; battery management system; PREDICTION; CURVES; LIFE; SOC;
D O I
10.3390/en16031420
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The lithium-ion battery state of health (SOH) estimation is an essential parameter to ensure the safety and stability of the life cycle of electric vehicles. Accurate SOH estimation has been an industry puzzle and a hot topic in academia. To solve the problem of low fitting accuracy of lithium-ion battery SOH estimation in a traditional neural network, a nonlinear autoregressive with exogenous input (NARX) neural network is proposed based on the charging stage. Firstly, six health factors related to the lithium-ion battery aging state are acquired at the charging stage because the charging process has better applicability and simplicity than the discharging process in actual operation. Then six health factors are pre-processed using the principal component analysis (PCA) method. The principal component of the input variable is selected as the input of the neural network, which reduces the dimension of input compared with the neural network model without principal component analysis. The correlation between the inputs is eliminated. To verify the rationality of the proposed algorithm, two public aging datasets are used to develop and validate it. Moreover, the proposed PCA-NARX method is compared with the other two neural networks. The simulation results show that the proposed method can achieve accurate SOH estimation for different types of lithium-ion batteries under different conditions. The average mean absolute error (MAE) and root mean square error (RMSE) are 0.68% and 0.94%, respectively. Compared with other neural networks, the prediction error is reduced by more than 50% on average, which demonstrates the effectiveness of the proposed SOH estimation method.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] State-of-Health Estimation of Lithium-Ion Batteries based on Partial Charging Voltage Profiles
    Stroe, D. -I.
    Knap, V.
    Schaltz, E.
    SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13): : 379 - 386
  • [2] Constant current charging time based fast state-of-health estimation for lithium-ion batteries
    Lin, Chuanping
    Xu, Jun
    Shi, Mingjie
    Mei, Xuesong
    ENERGY, 2022, 247
  • [3] A model for state-of-health estimation of lithium ion batteries based on charging profiles
    Bian, Xiaolei
    Liu, Longcheng
    Yan, Jinying
    ENERGY, 2019, 177 : 57 - 65
  • [4] Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data
    Lin, Chuanping
    Xu, Jun
    Mei, Xuesong
    ENERGY STORAGE MATERIALS, 2023, 54 : 85 - 97
  • [5] State-of-health estimation for lithium-ion batteries based on historical dependency of charging data and ensemble SVR
    Guo, Yongfang
    Huang, Kai
    Yu, Xiangyuan
    Wang, Yashuang
    ELECTROCHIMICA ACTA, 2022, 428
  • [6] State-of-health estimation for lithium-ion batteries based on partial charging segment and stacking model fusion
    Xu, Jinli
    Liu, Baolei
    Zhang, Guangya
    Zhu, Jiwei
    ENERGY SCIENCE & ENGINEERING, 2023, 11 (01) : 383 - 397
  • [7] A voltage reconstruction model based on partial charging curve for state-of-health estimation of lithium-ion batteries
    Yang, Sijia
    Zhang, Caiping
    Jiang, Jiuchun
    Zhang, Weige
    Gao, Yang
    Zhang, Linjing
    JOURNAL OF ENERGY STORAGE, 2021, 35
  • [8] State-of-health estimation for lithium-ion batteries based on historical dependency of charging data and ensemble SVR
    Guo, Yongfang
    Huang, Kai
    Yu, Xiangyuan
    Wang, Yashuang
    Electrochimica Acta, 2022, 428
  • [9] State of Health Estimation of Lithium-Ion Batteries Based on Dual Charging State
    Lu D.
    Chen Z.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2022, 56 (03): : 342 - 352
  • [10] Domain generalization-based state-of-health estimation of lithium-ion batteries
    Chen, Liping
    Bao, Xinyuan
    Lopes, Antonio M.
    Li, Xin
    Kong, Huifang
    Chai, Yi
    Li, Penghua
    JOURNAL OF POWER SOURCES, 2024, 610