Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery

被引:56
作者
Silveira, Eduarda M. O. [1 ]
Radeloff, Volker C. [1 ]
Martinuzzi, Sebastian [1 ]
Martinez Pastur, Guillermo J. [2 ]
Bono, Julieta [3 ]
Politi, Natalia [4 ]
Lizarraga, Leonidas [5 ]
Rivera, Luis O. [4 ]
Ciuffoli, Lucia [3 ]
Rosas, Yamina M. [6 ]
Olah, Ashley M. [1 ]
Gavier-Pizarro, Gregorio, I [7 ]
Pidgeon, Anna M. [1 ]
机构
[1] Univ Wisconsin, Dept Forest & Wildlife Ecol, SILVIS Lab, 1630 Linden Dr, Madison, WI 53706 USA
[2] Consejo Nacl Invest Cient & Tecn, Ctr Austral Invest Cient CADIC, Houssay 200, RA-9410 Ushuaia, Tierra Fuego, Argentina
[3] Minist Ambiente & Desarrollo Sostenible Nacion, Direcc Nacl Bosques, Buenos Aires, DF, Argentina
[4] Univ Nacl Jujuy UNJu, Inst Ecoreg Andinas INECOA, CONICET, Juan Bautista Alberdi 47 Y4600DTA, San Salvador De Jujuy, Argentina
[5] Adm Parques Nacl, Direcc Reg Noroeste, Santa Fe 23, RA-4400 Salta, Argentina
[6] Univ Copenhagen, Dept Geosci & Nat Resource Management, Rolighedsvej 23, DK-1958 Frederiksberg, Denmark
[7] Inst Nacl Tecnol Agr INTA, Buenos Aires, DF, Argentina
基金
美国国家航空航天局;
关键词
DBH; Basal area; Mean height; Dominant height; Volume; Canopy cover; EVI; DHIs; VV polarization; VH polarization; Radar; Optical; GROWING STOCK VOLUME; MODEL-ASSISTED ESTIMATION; SYNTHETIC-APERTURE RADAR; REMOTE-SENSING DATA; ABOVEGROUND BIOMASS; BOREAL FOREST; MODERATE RESOLUTION; HABITAT ANALYSIS; LANDSAT; ETM PLUS;
D O I
10.1016/j.rse.2022.113391
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Detailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is chal-lenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure attributes (diameter at breast height, basal area, mean height, dominant height, wood volume and canopy cover) at 30-m resolution across the diverse 463,000 km2 of native forests of Argentina based on SAR Sentinel-1, vegetation metrics from Sentinel-2 and geographic coordinates. We modelled the forest structure attributes based on the latest national forest inventory, generated uncertainty maps, quantified the contribution of the predictors, and compared our height predictions with those from GEDI (Global Ecosystem Dynamics Investiga-tion) and GFCH (Global Forest Canopy Height). We analyzed 3788 forest inventory plots (1000 m2 each) from Argentina's Second Native Forest Inventory (2015-2020) to develop predictive random forest regression models. From Sentinel-1, we included both VV (vertical transmitted and received) and VH (vertical transmitted and horizontal received) polarizations and calculated 1st and 2nd order textures within 3 x 3 pixels to match the size of the inventory plots. For Sentinel-2, we derived EVI (enhanced vegetation index), calculated DHIs (dynamic habitat indices (annual cumulative, minimum and variation) and the EVI median, then generated 1st and 2nd order textures within 3 x 3 pixels of these variables. Our models including metrics from Sentinel-1 and 2, plus latitude and longitude predicted forest structure attributes well with root mean square errors (RMSE) ranging from 23.8% to 70.3%. Mean and dominant height models had notably good performance presenting relatively low RMSE (24.5% and 23.8%, respectively). Metrics from VH polarization and longitude were overall the most important predictors, but optimal predictors differed among the different forest structure attributes. Height predictions (r = 0.89 and 0.85) outperformed those from GEDI (r = 0.81) and the GFCH (r = 0.66), suggesting that SAR Sentinel-1, DHIs from Sentinel-2 plus geographic coordinates provide great opportunities to map multiple forest structure attributes for large areas. Based on our models, we generated spatially-explicit maps of multiple forest structure attributes as well as uncertainty maps at 30-m spatial resolution for all Argentina's native forest areas in support of forest management and conservation planning across the country.
引用
收藏
页数:17
相关论文
共 106 条
[1]   Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters [J].
Adam, Markus ;
Urbazaev, Mikhail ;
Dubois, Clemence ;
Schmullius, Christiane .
REMOTE SENSING, 2020, 12 (23) :1-28
[2]   Integration of UAV, Sentinel-1, and Sentinel-2 Data for Mangrove Plantation Aboveground Biomass Monitoring in Senegal [J].
Antonio Navarro, Jose ;
Algeet, Nur ;
Fernandez-Landa, Alfredo ;
Esteban, Jessica ;
Rodriguez-Noriega, Pablo ;
Luz Guillen-Climent, Maria .
REMOTE SENSING, 2019, 11 (01)
[3]   Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region [J].
Astola, Heikki ;
Hame, Tuomas ;
Sirro, Laura ;
Molinier, Matthieu ;
Kilpi, Jorma .
REMOTE SENSING OF ENVIRONMENT, 2019, 223 :257-273
[4]   An integrated pan-tropical biomass map using multiple reference datasets [J].
Avitabile, Valerio ;
Herold, Martin ;
Heuvelink, Gerard B. M. ;
Lewis, Simon L. ;
Phillips, Oliver L. ;
Asner, Gregory P. ;
Armston, John ;
Ashton, Peter S. ;
Banin, Lindsay ;
Bayol, Nicolas ;
Berry, Nicholas J. ;
Boeckx, Pascal ;
de Jong, Bernardus H. J. ;
DeVries, Ben ;
Girardin, Cecile A. J. ;
Kearsley, Elizabeth ;
Lindsell, Jeremy A. ;
Lopez-Gonzalez, Gabriela ;
Lucas, Richard ;
Malhi, Yadvinder ;
Morel, Alexandra ;
Mitchard, Edward T. A. ;
Nagy, Laszlo ;
Qie, Lan ;
Quinones, Marcela J. ;
Ryan, Casey M. ;
Ferry, Slik J. W. ;
Sunderland, Terry ;
Laurin, Gaia Vaglio ;
Gatti, Roberto Cazzolla ;
Valentini, Riccardo ;
Verbeeck, Hans ;
Wijaya, Arief ;
Willcock, Simon .
GLOBAL CHANGE BIOLOGY, 2016, 22 (04) :1406-1420
[5]   A first map of tropical Africa's above-ground biomass derived from satellite imagery [J].
Baccini, A. ;
Laporte, N. ;
Goetz, S. J. ;
Sun, M. ;
Dong, H. .
ENVIRONMENTAL RESEARCH LETTERS, 2008, 3 (04)
[6]   Mapping attributes of Canada's forests at moderate resolution through kNN and MODIS imagery [J].
Beaudoin, A. ;
Bernier, P. Y. ;
Guindon, L. ;
Villemaire, P. ;
Guo, X. J. ;
Stinson, G. ;
Bergeron, T. ;
Magnussen, S. ;
Hall, R. J. .
CANADIAN JOURNAL OF FOREST RESEARCH, 2014, 44 (05) :521-532
[7]  
Beck J., 2021, Document version 2
[8]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[9]  
Berry Sandra, 2007, Pacific Conservation Biology, V13, P120
[10]   Mapping US forest biomass using nationwide forest inventory data and moderate resolution information [J].
Blackard, J. A. ;
Finco, M. V. ;
Helmer, E. H. ;
Holden, G. R. ;
Hoppus, M. L. ;
Jacobs, D. M. ;
Lister, A. J. ;
Moisen, G. G. ;
Nelson, M. D. ;
Riemann, R. ;
Ruefenacht, B. ;
Salajanu, D. ;
Weyermann, D. L. ;
Winterberger, K. C. ;
Brandeis, T. J. ;
Czaplewski, R. L. ;
McRoberts, R. E. ;
Patterson, P. L. ;
Tymcio, R. P. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) :1658-1677