Inversion of a Stokes glacier flow model emulated by deep learning

被引:29
作者
Jouvet, Guillaume [1 ,2 ]
机构
[1] Univ Zurich, Dept Geog, Zurich, Switzerland
[2] Univ Lausanne, Inst Earth Surface Dynam, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Glacier flow; glacier mechanics; glacier modeling; ground-penetrating radar; ice dynamics; ICE-THICKNESS DISTRIBUTION; SURFACE VELOCITIES; NEURAL-NETWORKS; SHEET; GREENLAND; TOPOGRAPHY; DYNAMICS; ADJOINT;
D O I
10.1017/jog.2022.41
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Data assimilation in high-order ice flow modeling is a challenging and computationally costly task, yet crucial to find ice thickness and ice flow parameter distributions that are consistent with ice flow mechanics and mass balance while best matching observations. Failing to find these distributions that are required as initial conditions leads to a disequilibrium between mass balance and ice flow, resulting in nonphysical transient effects in the prognostic model. Here we tackle this problem by inverting an emulator of the Stokes ice flow model based on deep learning. By substituting the ice flow equations using a convolutional neural network emulator, we simplify, make more robust and dramatically speed up the solving of the underlying optimization problem thanks to automatic differentiation, stochastic gradient methods and implementation of graphics processing unit (GPU). We demonstrate this process by simultaneously inferring the ice thickness distribution, ice flow parametrization and ice surface of ten of the largest glaciers in Switzerland. As a result, we obtain a high degree of assimilation while guaranteeing an equilibrium between mass-balance and ice flow mechanics. The code runs very efficiently (optimizing one large-size glacier at 100 m takes < 1 min on a laptop) while it is open-source and publicly available.
引用
收藏
页码:13 / 26
页数:14
相关论文
共 46 条
[1]  
[Anonymous], 2007, THESIS EPFL
[2]  
Ba J, 2014, PREPRINT ARXIV141269
[3]   Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning [J].
Bolibar, Jordi ;
Rabatel, Antoine ;
Gouttevin, Isabelle ;
Zekollari, Harry ;
Galiez, Clovis .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   Constraining subglacial processes from surface velocity observations using surrogate-based Bayesian inference [J].
Brinkerhoff, Douglas ;
Aschwanden, Andy ;
Fahnestock, Mark .
JOURNAL OF GLACIOLOGY, 2021, 67 (263) :385-403
[5]   Neural Networks Applied to Estimating Subglacial Topography and Glacier Volume [J].
Clarke, Garry K. C. ;
Berthier, Etienne ;
Schoof, Christian G. ;
Jarosch, Alexander H. .
JOURNAL OF CLIMATE, 2009, 22 (08) :2146-2160
[6]  
Cuffey K.M., 2010, The Physics of Glaciers
[7]   Projected land ice contributions to twenty-first-century sea level rise [J].
Edwards, Tamsin L. ;
Nowicki, Sophie ;
Marzeion, Ben ;
Hock, Regine ;
Goelzer, Heiko ;
Seroussi, Helene ;
Jourdain, Nicolas C. ;
Slater, Donald A. ;
Turner, Fiona E. ;
Smith, Christopher J. ;
McKenna, Christine M. ;
Simon, Erika ;
Abe-Ouchi, Ayako ;
Gregory, Jonathan M. ;
Larour, Eric ;
Lipscomb, William H. ;
Payne, Antony J. ;
Shepherd, Andrew ;
Agosta, Cecile ;
Alexander, Patrick ;
Albrecht, Torsten ;
Anderson, Brian ;
Asay-Davis, Xylar ;
Aschwanden, Andy ;
Barthel, Alice ;
Bliss, Andrew ;
Calov, Reinhard ;
Chambers, Christopher ;
Champollion, Nicolas ;
Choi, Youngmin ;
Cullather, Richard ;
Cuzzone, Joshua ;
Dumas, Christophe ;
Felikson, Denis ;
Fettweis, Xavier ;
Fujita, Koji ;
Galton-Fenzi, Benjamin K. ;
Gladstone, Rupert ;
Golledge, Nicholas R. ;
Greve, Ralf ;
Hattermann, Tore ;
Hoffman, Matthew J. ;
Humbert, Angelika ;
Huss, Matthias ;
Huybrechts, Philippe ;
Immerzeel, Walter ;
Kleiner, Thomas ;
Kraaijenbrink, Philip ;
Le Clec'h, Sebastien ;
Lee, Victoria .
NATURE, 2021, 593 (7857) :74-+
[8]   A consensus estimate for the ice thickness distribution of all glaciers on Earth [J].
Farinotti, Daniel ;
Huss, Matthias ;
Fuerst, Johannes J. ;
Landmann, Johannes ;
Machguth, Horst ;
Maussion, Fabien ;
Pandit, Ankur .
NATURE GEOSCIENCE, 2019, 12 (03) :168-+
[9]   How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment [J].
Farinotti, Daniel ;
Brinkerhoff, Douglas J. ;
Clarke, Garry K. C. ;
Fuerst, Johannes J. ;
Frey, Holger ;
Gantayat, Prateek ;
Gillet-Chaulet, Fabien ;
Girard, Claire ;
Huss, Matthias ;
Leclercq, Paul W. ;
Linsbauer, Andreas ;
Machguth, Horst ;
Martin, Carlos ;
Maussion, Fabien ;
Morlighem, Mathieu ;
Mosbeux, Cyrille ;
Pandit, Ankur ;
Portmann, Andrea ;
Rabatel, Antoine ;
Ramsankaran, Raaj ;
Reerink, Thomas J. ;
Sanchez, Olivier ;
Stentoft, Peter A. ;
Kumari, Sangita Singh ;
van Pelt, Ward J. J. ;
Anderson, Brian ;
Benham, Toby ;
Binder, Daniel ;
Dowdeswell, Julian A. ;
Fischer, Andrea ;
Helfricht, Kay ;
Kutuzov, Stanislav ;
Lavrentiev, Ivan ;
McNabb, Robert ;
Gudmundsson, G. Hilmar ;
Li, Huilin ;
Andreassen, Liss M. .
CRYOSPHERE, 2017, 11 (02) :949-970
[10]   A method to estimate the ice volume and ice-thickness distribution of alpine glaciers [J].
Farinotti, Daniel ;
Huss, Matthias ;
Bauder, Andreas ;
Funk, Martin ;
Truffer, Martin .
JOURNAL OF GLACIOLOGY, 2009, 55 (191) :422-430