Uniqueness for an Obstacle Problem Arising from Logistic-Type Equations with Fractional Laplacian

被引:1
作者
Klimsiak, Tomasz [1 ,2 ]
机构
[1] Nicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland
[2] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
关键词
Dirichlet fractional Laplacian; Obstacle problem; Logistic equation; Intrinsic ultracontractivity; SCHRODINGER-OPERATORS; ELLIPTIC-EQUATIONS; DIRICHLET FORMS; THEOREM;
D O I
10.1007/s11118-022-09986-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a uniqueness theorem for the obstacle problem for linear equations involving the fractional Laplacian with zero Dirichlet exterior condition. The problem under consideration arises as the limit of some logistic-type equations. Our result extends (and slightly strengthens) the known corresponding results for the classical Laplace operator with zero boundary condition. Our proof, as compared with the known proof for the classical Laplace operator, is entirely new, and is based on the probabilistic potential theory. Its advantage is that it may be applied to a wide class of integro-differential operators.
引用
收藏
页码:897 / 916
页数:20
相关论文
共 28 条
[1]  
Billingsley P., 1999, Convergence of Probability Measures, DOI DOI 10.1002/9780470316962
[2]  
Bliedtner J., 1986, POTENTIAL THEORY ANA, DOI DOI 10.1007/978-3-642-71131-2
[3]  
Blumenthal M. R., 2007, Markov Processes and Potential Theory
[4]   Estimates on Green functions and Poisson kernels for symmetric stable processes [J].
Chen, ZQ ;
Song, RM .
MATHEMATISCHE ANNALEN, 1998, 312 (03) :465-501
[5]  
Chung K. L., 1986, SEM STOCH PROC 1985, P63
[6]   MEYERS THEOREM ON PREDICTABILITY [J].
CHUNG, KL ;
WALSH, JB .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 29 (03) :253-256
[7]  
Chung KL., 1995, From Brownian Motion to Schrdingers Equation, DOI DOI 10.1007/978-3-642-57856-4
[8]   A uniqueness theorem for a free boundary problem [J].
Dancer, E. N. ;
Du, Yihong .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (11) :3223-3230
[9]   Asymptotic behavior of positive solutions of some elliptic problems [J].
Dancer, EN ;
Du, YH ;
Ma, L .
PACIFIC JOURNAL OF MATHEMATICS, 2003, 210 (02) :215-228
[10]   On a free boundary problem arising from population biology [J].
Dancer, EN ;
Du, YH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (01) :51-67