HGRec: Group Recommendation With Hypergraph Convolutional Networks

被引:4
|
作者
Wang, Nan [1 ]
Liu, Dan [1 ]
Zeng, Jin [1 ]
Mu, Lijin [1 ]
Li, Jinbao [2 ,3 ]
机构
[1] Heilongjiang Univ, Coll Comp Sci & Technol, Harbin 150080, Peoples R China
[2] Qilu Univ Technol, Shandong Artificial Intelligence Inst, Jinan 250014, Peoples R China
[3] Qilu Univ Technol, Sch Math & Stat, Jinan 250353, Peoples R China
关键词
Self-supervised learning; Task analysis; Decision making; Convolutional neural networks; Collaboration; Recommender systems; Aggregates; Contrastive learning; graph neural network; group recommendation; hypergraph convolution; user behavior modelling;
D O I
10.1109/TCSS.2024.3363843
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Recommendation systems have shifted from personalization for individual users to consensus for groups as a result of people's growing tendency to join groups to participate in various everyday activities, like family meals and workplace reunions. This is because social networks have made it easier for people to participate in these kinds of events. Group recommendation is the process of suggesting items to groups. To derive group preferences, the majority of current approaches combine the individual preferences of group members utilizing heuristic or attention mechanism-based techniques. These approaches, however, have three issues. First, these approaches ignore the complex high-order interactions that occur both inside and outside of groups, just modeling the preferences of individual groups of users. Second, a group's ultimate decision is not always determined by the members' preferences. Nevertheless, current approaches are not adequate to represent such preferences across groups. Last, data sparsity affects group recommendations due to the sparsity of group-item interactions. To overcome the aforementioned constraints, we propose employing hypergraph convolutional networks for group recommendation. Specifically, our design aims to achieve excellent group preferences by establishing a high-order preference extraction view represented by the hypergraph, a consistent preference extraction view represented by the overlap graph, and a conventional preference extraction view represented by the bipartite graph. The linkages between the three various views are then established by using cross-view contrastive learning, and the information between different views can be complementary, thereby improving each other. Comprehensive experiments on three publicly available datasets show that our method performs better than the state-of-the-art baseline.
引用
收藏
页码:4214 / 4225
页数:12
相关论文
共 50 条
  • [21] Traffic Origin-Destination Demand Prediction via Multichannel Hypergraph Convolutional Networks
    Wang, Ming
    Zhang, Yong
    Zhao, Xia
    Hu, Yongli
    Yin, Baocai
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (04) : 5496 - 5509
  • [22] Adaptive Context-Embedded Hypergraph Convolutional Network for Session-based Recommendation
    Zhao, Chenyang
    Cao, Heling
    Lv, Pengtao
    Chu, Yonghe
    Wang, Feng
    Liao, Tianli
    INFORMATION TECHNOLOGY AND CONTROL, 2023, 52 (01): : 111 - 127
  • [23] Embedding Disentanglement in Graph Convolutional Networks for Recommendation
    Zhu, Tianyu
    Sun, Leilei
    Chen, Guoqing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 431 - 442
  • [24] Incorporating Price into Recommendation With Graph Convolutional Networks
    Zheng, Yu
    Gao, Chen
    He, Xiangnan
    Jin, Depeng
    Li, Yong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1609 - 1623
  • [25] DGCN: Diversified Recommendation with Graph Convolutional Networks
    Zheng, Yu
    Gao, Chen
    Chen, Liang
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 401 - 412
  • [26] Hypergraph contrastive learning for recommendation with side information
    Ao, Dun
    Cao, Qian
    Wang, Xiaofeng
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2024, 17 (04) : 657 - 670
  • [27] Self-Attention Based Sequential Recommendation With Graph Convolutional Networks
    Seng, Dewen
    Wang, Jingchang
    Zhang, Xuefeng
    IEEE ACCESS, 2024, 12 : 32780 - 32787
  • [28] Heterogeneous Multi-Behavior Recommendation Based on Graph Convolutional Networks
    Rang, Ran
    Xing, Linlin
    Zhang, Longbo
    Cai, Hongzhen
    Sun, Zhaojie
    IEEE ACCESS, 2023, 11 : 22574 - 22584
  • [29] HS-GCN: Hamming Spatial Graph Convolutional Networks for Recommendation
    Liu, Han
    Wei, Yinwei
    Yin, Jianhua
    Nie, Liqiang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 5977 - 5990
  • [30] Personalized Citation Recommendation via Convolutional Neural Networks
    Yin, Jun
    Li, Xiaoming
    WEB AND BIG DATA, APWEB-WAIM 2017, PT II, 2017, 10367 : 285 - 293