Targeting and engineering long non-coding RNAs for cancer therapy

被引:88
作者
Coan, Michela [1 ,2 ,3 ]
Haefliger, Simon [4 ,5 ]
Ounzain, Samir [6 ]
Johnson, Rory [1 ,2 ,4 ,5 ,7 ]
机构
[1] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin, Ireland
[2] Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin, Ireland
[3] Univ Coll Dublin, Sch Med, Dublin, Ireland
[4] Univ Bern, Bern Univ Hosp, Dept Med Oncol, Inselspital, Bern, Switzerland
[5] Univ Bern, Dept Biomed Res, Bern, Switzerland
[6] HAYA Therapeut, Lausanne, Vaud, Switzerland
[7] FutureNeuro, SFI Res Ctr Chron & Rare Neurol Dis, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
ANTISENSE OLIGONUCLEOTIDES; GENE-EXPRESSION; UP-REGULATION; CELL-PROLIFERATION; HEPATOCELLULAR-CARCINOMA; EVOLUTIONARY DYNAMICS; LIPID NANOPARTICLES; CERVICAL-CANCER; POOR-PROGNOSIS; BINDING-SITES;
D O I
10.1038/s41576-024-00693-2
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer. Therapeutics that target long non-coding RNAs (lncRNAs) are promising treatments for cancer. In this Review, the authors discuss how technological advances have helped improve drug discovery pipelines for lncRNAs and overview their strengths and challenges as oncological therapeutics.
引用
收藏
页码:578 / 595
页数:18
相关论文
共 256 条
[1]   RNA targeting with CRISPR-Cas13 [J].
Abudayyeh, Omar O. ;
Gootenberg, Jonathan S. ;
Essletzbichler, Patrick ;
Han, Shuo ;
Joung, Julia ;
Belanto, Joseph J. ;
Verdine, Vanessa ;
Cox, David B. T. ;
Kellner, Max J. ;
Regev, Aviv ;
Lander, Eric S. ;
Voytas, Daniel F. ;
Ting, Alice Y. ;
Zhang, Feng .
NATURE, 2017, 550 (7675) :280-+
[2]   Selective Small-Molecule Targeting of a Triple Helix Encoded by the Long Noncoding RNA, MALAT1 [J].
Abulwerdi, Fardokht A. ;
Xu, Wenbo ;
Ageeli, Abeer A. ;
Yonkunas, Michael J. ;
Arun, Gayatri ;
Nam, Hyeyeon ;
Schneekloth, John S., Jr. ;
Dayie, Theodore Kwaku ;
Spector, David ;
Baird, Nathan ;
Le Grice, Stuart F. J. .
ACS CHEMICAL BIOLOGY, 2019, 14 (02) :223-235
[3]   Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis [J].
Adams, D. ;
Gonzalez-Duarte, A. ;
O'Riordan, W. D. ;
Yang, C. -C. ;
Ueda, M. ;
Kristen, A. V. ;
Tournev, I. ;
Schmidt, H. H. ;
Coelho, T. ;
Berk, J. L. ;
Lin, K. -P. ;
Vita, G. ;
Attarian, S. ;
Plante-Bordeneuve, V. ;
Mezei, M. M. ;
Campistol, J. M. ;
Buades, J. ;
Brannagan, T. H., III ;
Kim, B. J. ;
Oh, J. ;
Parman, Y. ;
Sekijima, Y. ;
Hawkins, P. N. ;
Solomon, S. D. ;
Polydefkis, M. ;
Dyck, P. J. ;
Gandhi, P. J. ;
Goyal, S. ;
Chen, J. ;
Strahs, A. L. ;
Nochur, S. V. ;
Sweetser, M. T. ;
Garg, P. P. ;
Vaishnaw, A. K. ;
Gollob, J. A. ;
Suhr, O. B. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (01) :11-21
[4]   Targeted Inhibition of lncRNA Malat1 Alters the Tumor Immune Microenvironment in Preclinical Syngeneic Mouse Models of Triple-Negative Breast Cancer [J].
Adewunmi, Oluwatoyosi ;
Shen, Yichao ;
Zhang, Xiang H. -F. ;
Rosen, Jeffrey M. .
CANCER IMMUNOLOGY RESEARCH, 2023, 11 (11) :1462-1479
[5]   Targeting Xist with compounds that disrupt RNA structure and X inactivation [J].
Aguilar, Rodrigo ;
Spencer, Kerrie B. ;
Kesner, Barry ;
Rizvi, Noreen F. ;
Badmalia, Maulik D. ;
Mrozowich, Tyler ;
Mortison, Jonathan D. ;
Rivera, Carlos ;
Smith, Graham F. ;
Burchard, Julja ;
Dandliker, Peter J. ;
Patel, Trushar R. ;
Nickbarg, Elliott B. ;
Lee, Jeannie T. .
NATURE, 2022, 604 (7904) :160-+
[6]   Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms [J].
Akinc, Akin ;
Querbes, William ;
De, Soma ;
Qin, June ;
Frank-Kamenetsky, Maria ;
Jayaprakash, K. Narayanannair ;
Jayaraman, Muthusamy ;
Rajeev, Kallanthottathil G. ;
Cantley, William L. ;
Dorkin, J. Robert ;
Butler, James S. ;
Qin, LiuLiang ;
Racie, Timothy ;
Sprague, Andrew ;
Fava, Eugenio ;
Zeigerer, Anja ;
Hope, Michael J. ;
Zerial, Marino ;
Sah, Dinah W. Y. ;
Fitzgerald, Kevin ;
Tracy, Mark A. ;
Manoharan, Muthiah ;
Koteliansky, Victor ;
de Fougerolles, Antonin ;
Maier, Martin A. .
MOLECULAR THERAPY, 2010, 18 (07) :1357-1364
[7]   The eukaryotic genome as an RNA machine [J].
Amaral, Paulo P. ;
Dinger, Marcel E. ;
Mercer, Tim R. ;
Mattick, John S. .
SCIENCE, 2008, 319 (5871) :1787-1789
[8]   Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity [J].
Amodio, Nicola ;
Stamato, Maria Angelica ;
Juli, Giada ;
Morelli, Eugenio ;
Fulciniti, Mariateresa ;
Manzoni, Martina ;
Taiana, Elisa ;
Agnelli, Luca ;
Cantafio, Maria Eugenia Gallo ;
Romeo, Enrica ;
Raimondi, Lavinia ;
Caracciolo, Daniele ;
Zuccala, Valeria ;
Rossi, Marco ;
Neri, Antonino ;
Munshi, Nikhil C. ;
Tagliaferri, Pierosandro ;
Tassone, Pierfrancesco .
LEUKEMIA, 2018, 32 (09) :1948-1957
[9]   MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches [J].
Amodio, Nicola ;
Raimondi, Lavinia ;
Juli, Giada ;
Stamato, Maria Angelica ;
Caracciolo, Daniele ;
Tagliaferri, Pierosandro ;
Tassone, Pierfrancesco .
JOURNAL OF HEMATOLOGY & ONCOLOGY, 2018, 11
[10]   From genotype to phenotype: genetics of mammalian long non-coding RNAs in vivo [J].
Andergassen, Daniel ;
Rinn, John L. .
NATURE REVIEWS GENETICS, 2022, 23 (04) :229-243