MRAN: Multimodal relationship-aware attention network for fake news detection

被引:20
作者
Yang, Hongyu [1 ,2 ]
Zhang, Jinjiao [2 ]
Zhang, Liang [3 ]
Cheng, Xiang [4 ,5 ]
Hu, Ze [1 ]
机构
[1] Civil Aviat Univ China, Sch Safety Sci & Engn, Tianjin 300300, Peoples R China
[2] Civil Aviat Univ China, Sch Comp Sci & Technol, Tianjin 300300, Peoples R China
[3] Univ Arizona, Sch Informat, Tucson, AZ 85721 USA
[4] Yangzhou Univ, Sch Informat Engn, Yangzhou 225127, Peoples R China
[5] Civil Aviat Univ China, Informat Secur Evaluat Ctr Civil Aviat, Tianjin 300300, Peoples R China
基金
中国国家自然科学基金;
关键词
Fake news detection; Multimodal information; Multimodal feature fusion; Hierarchical semantic feature;
D O I
10.1016/j.csi.2023.103822
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Existing multimodal fake news detection methods face challenges in jointly capturing the intramodality and cross-modal correlation relationships between image regions and text fragments. Additionally, these methods lack comprehensive hierarchical semantics mining for text. These limitations result in ineffective utilization of multimodal information and impact detection performance. To address these issues, we propose a multimodal relationship-aware attention network (MRAN), which consists of three main steps. First, a multi-level encoding network is employed to extract hierarchical semantic feature representations of text, while the visual feature extractor VGG19 learns image feature representations. Second, the captured text and image representations are input into the relationship-aware attention network, which generates high-order fusion features by calculating the similarity between information segments within modalities and cross-modal similarity. Finally, the fusion features are passed through a fake news detector, which identifies fake news. Experimental results on three benchmark datasets demonstrate the effectiveness of MRAN, highlighting its strong detection performance.
引用
收藏
页数:11
相关论文
共 40 条
[1]  
Alam F., 2022, P 29 INT C COMP LING, P6625
[2]  
Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, DOI 10.48550/ARXIV.1409.0473]
[3]   Detection and visualization of misleading content on Twitter [J].
Boididou, Christina ;
Papadopoulos, Symeon ;
Zampoglou, Markos ;
Apostolidis, Lazaros ;
Papadopoulou, Olga ;
Kompatsiaris, Yiannis .
INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2018, 7 (01) :71-86
[4]   Cross-modal Ambiguity Learning for Multimodal Fake News Detection [J].
Chen, Yixuan ;
Li, Dongsheng ;
Zhang, Peng ;
Sui, Jie ;
Lv, Qin ;
Lu, Tun ;
Shang, Li .
PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, :2897-2905
[5]   VRoC: Variational Autoencoder-aided Multi-task Rumor Classifier Based on Text [J].
Cheng, Mingxi ;
Nazarian, Shahin ;
Bogdan, Paul .
WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, :2892-2898
[6]   Predicting the security threats of internet rumors and spread of false information based on sociological principle [J].
Chu, Wentao ;
Lee, Kuok-Tiung ;
Luo, Wei ;
Bhambri, Pankaj ;
Kautish, Sandeep .
COMPUTER STANDARDS & INTERFACES, 2021, 73
[7]  
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
[8]   Sequential Recommendation via Stochastic Self-Attention [J].
Fan, Ziwei ;
Liu, Zhiwei ;
Wang, Yu ;
Wang, Alice ;
Nazari, Zahra ;
Zheng, Lei ;
Peng, Hao ;
Yu, Philip S. .
PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, :2036-2047
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs [J].
Jin, Zhiwei ;
Cao, Juan ;
Guo, Han ;
Zhang, Yongdong ;
Luo, Jiebo .
PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, :795-803