Automatic sleep staging by a hybrid model based on deep 1D-ResNet-SE and LSTM with single-channel raw EEG signals

被引:3
作者
Li, Weiming [1 ]
Gao, Junhui [1 ]
机构
[1] Shanghai Nuanhe Brain Technol Co Ltd, Shanghai, Peoples R China
关键词
Sleep staging; EEG; Deep learning; ResNet; Squeeze-and-Excitation; LSTM; NEURAL-NETWORKS; AASM; RECHTSCHAFFEN; RELIABILITY; PREDICTION; SYSTEM; KALES;
D O I
10.7717/peerj-cs.1561
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sleep staging is crucial for assessing sleep quality and diagnosing sleep disorders. Recent advances in deep learning methods with electroencephalogram (EEG) signals have shown remarkable success in automatic sleep staging. However, the use of deeper neural networks may lead to the issues of gradient disappearance and explosion, while the nonstationary nature and low signal-to-noise ratio of EEG signals can negatively impact feature representation. To overcome these challenges, we proposed a novel lightweight sequence-to-sequence deep learning model, 1D-ResNet-SE-LSTM, to classify sleep stages into five classes using single-channel raw EEG signals. Our proposed model consists of two main components: a one-dimensional residual convolutional neural network with a squeeze-and-excitation module to extract and reweight features from EEG signals, and a long short-term memory network to capture the transition rules among sleep stages. In addition, we applied the weighted cross-entropy loss function to alleviate the class imbalance problem. We evaluated the performance of our model on two publicly available datasets; Sleep-EDF Expanded consists of 153 overnight PSG recordings collected from 78 healthy subjects and ISRUC-Sleep includes 100 PSG recordings collected from 100 subjects diagnosed with various sleep disorders, and obtained an overall accuracy rate of 86.39% and 81.97%, respectively, along with corresponding macro average F1-scores of 81.95% and 79.94%. Our model outperforms existing sleep staging models in terms of overall performance metrics and per-class F1-scores for several sleep stages, particularly for the N1 stage, where it achieves F1-scores of 59.00% and 55.53%. The kappa coefficient is 0.812 and 0.766 for the Sleep-EDF Expanded and ISRUC-Sleep datasets, respectively, indicating strong agreement with certified sleep experts. We also investigated the effect of different weight coefficient combinations and sequence lengths of EEG epochs used as input to the model on its performance. Furthermore, the ablation study was conducted to evaluate the contribution of each component to the model's performance. The results demonstrate the effectiveness and robustness of the proposed model in classifying sleep stages, and highlights its potential to reduce human clinicians' workload, making sleep assessment and diagnosis more effective. However, the proposed model is subject to several limitations. Firstly, the model is a sequence-to-sequence network, which requires input sequences of EEG epochs. Secondly, the weight coefficients in the loss function could be further optimized to balance the classification performance of each sleep stage. attention mechanisms could enhance the model's effectiveness.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals
    Michielli, Nicola
    Acharya, U. Rajendra
    Molinari, Filippo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 106 : 71 - 81
  • [42] Automatic classification of infant sleep based on instantaneous frequencies in a single-channel EEG signal
    Cic, Maja
    Soda, Josko
    Bonkovic, Mirjana
    COMPUTERS IN BIOLOGY AND MEDICINE, 2013, 43 (12) : 2110 - 2117
  • [43] Strength of ensemble learning in automatic sleep stages classification using single-channel EEG and ECG signals
    Samandokht Rashidi
    Babak Mohammadzadeh Asl
    Medical & Biological Engineering & Computing, 2024, 62 : 997 - 1015
  • [44] End-to-end Sleep Staging with Raw Single Channel EEG using Deep Residual ConvNets
    Humayun, Ahmed Imtiaz
    Sushmitl, Asif Shahriyar
    Hasanl, Taufiq
    Bhuiyan, Mohammed Imamul Hassan
    2019 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2019,
  • [45] SleepSatelightFTC: A Lightweight and Interpretable Deep Learning Model for Single-Channel EEG-Based Sleep Stage Classification
    Ito, Aozora
    Tanaka, Toshihisa
    IEEE ACCESS, 2025, 13 : 46263 - 46272
  • [46] Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG
    Zhang, Junming
    Yao, Ruxian
    Ge, Wengeng
    Gao, Jinfeng
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 183 (183)
  • [47] Single-channel EEG sleep staging based on data augmentation and cross-subject discrepancy alleviation
    He, Zhengling
    Du, Lidong
    Wang, Peng
    Xia, Pan
    Liu, Zhe
    Song, Yuanlin
    Chen, Xianxiang
    Fang, Zhen
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149
  • [48] Influence of Channel Selection and Subject's Age on the Performance of the Single Channel EEG-Based Automatic Sleep Staging Algorithms
    Nazih, Waleed
    Shahin, Mostafa
    Eldesouki, Mohamed I.
    Ahmed, Beena
    SENSORS, 2023, 23 (02)
  • [49] EOGNET: A Novel Deep Learning Model for Sleep Stage Classification Based on Single-Channel EOG Signal
    Fan, Jiahao
    Sun, Chenglu
    Long, Meng
    Chen, Chen
    Chen, Wei
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [50] Time-Frequency Convolutional Neural Network for Automatic Sleep Stage Classification Based on Single-Channel EEG
    Wei, Liangjie
    Lin, Youfang
    Wang, Jing
    Ma, Yan
    2017 IEEE 29TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2017), 2017, : 88 - 95