Construction of novel tandem reaction system coupling H2O2 production with in situ bleaching over Au/TiO2 photocatalyst with different metal-support interactions

被引:4
|
作者
Zhou, Hexin [1 ,2 ]
Li, Bing [2 ]
Liu, Jun [3 ]
Yang, Wenxiu [2 ]
Wang, Wei [1 ]
Hu, Xuemin [2 ]
Wang, Shuo [2 ]
机构
[1] Changshu Inst Technol, Dept Text & Garment Engn, Suzhou 215500, Peoples R China
[2] Hebei Univ Sci & Technol, Coll Text & Garments, Innovat Ctr Text & Garment Technol, Shijiazhuang 050018, Hebei, Peoples R China
[3] Hebei Univ Sci & Technol, Sch Environm Sci & Engn, Shijiazhuang 050018, Peoples R China
关键词
Au/TiO2; Simultaneous fabric bleaching; SMSI; Photocatalytic; HYDROGEN-PEROXIDE; CARBON NITRIDE; COMPOSITES; MECHANISM; TIO2; STABILITY; WATER;
D O I
10.1016/j.psep.2023.12.061
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A novel tandem reaction system formed with H2O2 production and in situ fabric bleaching reaction was firstly designed and constructed with Au/TiO2 photocatalyst. Results showed H2O2 generated in situ achieved highefficiency fabric bleaching under the sunlight excitation, thus successfully constructing a ready -to -use system.center dot OH was confirmed as the main active specie in the simultaneous fabric bleaching reaction. Herein, to ensure the sufficient H2O2 production is a key factor. The different intensity of strong metal -support interaction (SMSI) was introduced into Au/TiO2 by regulating the calcination atmosphere to boost the H2O2 yield. H2/Ar calcination atmosphere imparted Au/TiO2 the SMSI effect to make H2O2 yield exceed that of counterpart under air atmosphere after 6 h of continuous reaction. The controllable capsulating overlayer on Au NPs provided relatively fewer exposed Au active sites to balance the H2O2 generation and decomposition rates, thus giving a better final yield. This work not only offer a novel path to improve H2O2 generation performance,but also propose new ideas for realizing in situ bleaching using sunlight as driving force and cleaning production of textile printing and dyeing industry.
引用
收藏
页码:355 / 364
页数:10
相关论文
共 49 条
  • [1] The decomposition of H2O2 over the components of Au/TiO2 catalysts
    Thetford, Adam
    Hutchings, Graham J.
    Taylor, Stuart H.
    Willock, David J.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2131): : 1885 - 1899
  • [2] Gas-phase oxidation of 2-propanol over Au/TiO2 catalysts to probe metal-support interactions
    Holz, Marie C.
    Kaehler, Kevin
    Toelle, Katharina
    van Veen, Andre C.
    Muhler, Martin
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (06): : 1094 - 1106
  • [3] Gas-phase oxidation of ethanol over Au/TiO2 catalysts to probe metal-support interactions
    Holz, Marie Christine
    Toelle, Katharina
    Muhler, Martin
    CATALYSIS SCIENCE & TECHNOLOGY, 2014, 4 (10) : 3495 - 3504
  • [4] Cooperative Coupling of H2O2 Production and Organic Synthesis over a Floatable Polystyrene-Sphere-Supported TiO2/Bi2O3 S-Scheme Photocatalyst
    He, Bowen
    Wang, Zhongliao
    Xiao, Peng
    Chen, Tao
    Yu, Jiaguo
    Zhang, Liuyang
    ADVANCED MATERIALS, 2022, 34 (38)
  • [5] Exceptional enhancement of H2 production in alkaline environment over plasmonic Au/TiO2 photocatalyst under visible light
    Meng, Xianguang
    Yu, Qing
    Wang, Tao
    Liu, Guigao
    Chang, Kun
    Li, Peng
    Liu, Lequan
    Ye, Jinhua
    APL MATERIALS, 2015, 3 (10):
  • [6] Supported Au Nanoparticles on TiO2 for Visible Light Photocatalytic H2O2 Production: Effects of Au Particle Size and Density
    Kao, Kun-Che
    Huang, Ssu-Ju
    Hsia, Yu-Fen
    Huang, Jui-Huang
    Mou, Chung-Yuan
    ACS APPLIED NANO MATERIALS, 2023, 7 (01) : 218 - 229
  • [7] Influence of TiO2 Bulk Defects on CO Adsorption and CO Oxidation on Au/TiO2: Electronic Metal-Support Interactions (EMSIs) in Supported Au Catalysts
    Wang, Yuchen
    Widmann, Daniel
    Behm, R. Juergen
    ACS CATALYSIS, 2017, 7 (04): : 2339 - 2345
  • [8] Photocatalytic production of H2O2 over rutile TiO2 supported with Pd nanoparticles
    Fazliev, Timur
    Polskikh, Danil
    Selishchev, Dmitry
    APPLIED SURFACE SCIENCE, 2025, 686
  • [9] Electronic Metal-Support Interactions Boost *OOH Intermediate Generation in Cu/In2Se3 for Electrochemical H2O2 Production
    Liu, Yuepeng
    Wang, Pengfei
    Xie, Liangbo
    Xia, Yuguo
    Zhan, Sihui
    Hu, Wenping
    Li, Yi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (23)
  • [10] Synergistic enhancement of solar H2O2 and HCOOH production over TiO2 by dual co-catalyst loading in a tri-phase system
    He, Bowen
    Luo, Cheng
    Wang, Zhongliao
    Zhang, Liuyang
    Yu, Jiaguo
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 323