A Visual Representation-Guided Framework With Global Affinity for Weakly Supervised Salient Object Detection

被引:9
|
作者
Xu, Binwei [1 ]
Liang, Haoran [1 ]
Gong, Weihua [1 ]
Liang, Ronghua [1 ]
Chen, Peng [1 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310023, Peoples R China
关键词
Visualization; Task analysis; Image edge detection; Annotations; Semantics; Training; Object detection; General visual representation; global affinity; salient object detection; scribble; self-supervised transformer;
D O I
10.1109/TCSVT.2023.3284076
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fully supervised salient object detection (SOD) methods have made considerable progress in performance, yet these models rely heavily on expensive pixel-wise labels. Recently, to achieve a trade-off between labeling burden and performance, scribble-based SOD methods have attracted increasing attention. Previous scribble-based models directly implement the SOD task only based on SOD training data with limited information, it is extremely difficult for them to understand the image and further achieve a superior SOD task. In this paper, we propose a simple yet effective framework guided by general visual representations with rich contextual semantic knowledge for scribble-based SOD. These general visual representations are generated by self-supervised learning based on large-scale unlabeled datasets. Our framework consists of a task-related encoder, a general visual module, and an information integration module to efficiently combine the general visual representations with task-related features to perform the SOD task based on understanding the contextual connections of images. Meanwhile, we propose a novel global semantic affinity loss to guide the model to perceive the global structure of the salient objects. Experimental results on five public benchmark datasets demonstrate that our method, which only utilizes scribble annotations without introducing any extra label, outperforms the state-of-theart weakly supervised SOD methods. Specifically, it outperforms the previous best scribble-based method on all datasets with an average gain of 5.5% for max f-measure, 5.8% for mean f-measure, 24% for MAE, and 3.1% for E-measure. Moreover, our method achieves comparable or even superior performance to the state-of-the-art fully supervised models.
引用
收藏
页码:248 / 259
页数:12
相关论文
共 50 条
  • [1] Multidimensional Exploration of Segment Anything Model for Weakly Supervised Video Salient Object Detection
    Xu, Binwei
    Jiang, Qiuping
    Zhao, Xing
    Lu, Chenyang
    Liang, Haoran
    Liang, Ronghua
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (04) : 2987 - 2998
  • [2] Weakly-Supervised Salient Object Detection With Saliency Bounding Boxes
    Liu, Yuxuan
    Wang, Pengjie
    Cao, Ying
    Liang, Zijian
    Lau, Rynson W. H.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4423 - 4435
  • [3] Weakly-Supervised Salient Object Detection on Light Fields
    Liang, Zijian
    Wang, Pengjie
    Xu, Ke
    Zhang, Pingping
    Lau, Rynson W. H.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6295 - 6305
  • [4] Synthesize Boundaries: A Boundary-Aware Self-Consistent Framework for Weakly Supervised Salient Object Detection
    Xu, Binwei
    Liang, Haoran
    Liang, Ronghua
    Chen, Peng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 4194 - 4205
  • [5] Weakly-Supervised Saliency Detection via Salient Object Subitizing
    Zheng, Xiaoyang
    Tan, Xin
    Zhou, Jie
    Ma, Lizhuang
    Lau, Rynson W. H.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (11) : 4370 - 4380
  • [6] Deep Hypersphere Feature Regularization for Weakly Supervised RGB-D Salient Object Detection
    Liu, Zhiyu
    Hayat, Munawar
    Yang, Hong
    Peng, Duo
    Lei, Yinjie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5423 - 5437
  • [7] A novel seminar learning framework for weakly supervised salient object detection
    Liu, Yan
    Zhang, Yunzhou
    Wang, Zhenyu
    Yang, Fei
    Qiu, Feng
    Coleman, Sonya
    Kerr, Dermot
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [8] SSFam: Scribble Supervised Salient Object Detection Family
    Liu, Zhengyi
    Deng, Sheng
    Wang, Xinrui
    Wang, Linbo
    Fang, Xianyong
    Tang, Bin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1988 - 2000
  • [9] MPLA-Net: Multiple Pseudo Label Aggregation Network for Weakly Supervised Video Salient Object Detection
    Ma, Chunjie
    Du, Lina
    Zhuo, Li
    Li, Jiafeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3905 - 3918
  • [10] Weakly Supervised RGB-D Salient Object Detection With Prediction Consistency Training and Active Scribble Boosting
    Xu, Yunqiu
    Yu, Xin
    Zhang, Jing
    Zhu, Linchao
    Wang, Dadong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2148 - 2161