Physics-Guided Multi-Agent Deep Reinforcement Learning for Robust Active Voltage Control in Electrical Distribution Systems

被引:4
作者
Chen, Pengcheng [1 ]
Liu, Shichao [1 ]
Wang, Xiaozhe [2 ]
Kamwa, Innocent [3 ]
机构
[1] Carleton Univ, Dept Elect, Ottawa, ON K1S 5B6, Canada
[2] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0G4, Canada
[3] Laval Univ, Dept Elect & Comp Sci Engn, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Distribution networks; Voltage fluctuations; active voltage control; multi-agent deep reinforcement learning; multi-agent adversarial learning; static var compensators; INTERFEROMETRIC RECEIVER; FRONT-END; POWER; MULTIFUNCTION; CALIBRATION; STANDARD; ANTENNA; DESIGN; GHZ;
D O I
10.1109/TCSI.2023.3340691
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although several multi-agent deep reinforcement learning (MADRL) algorithms have been employed in power distribution networks configured with high penetration level of Photovoltaic (PV) generators for active voltage control (AVC), the impact of the voltage fluctuation of a single PV node on voltage violations of other PV nodes in the network is ignored. Consequently, it leads to the conservativeness of the existing MADRL based AVC algorithms. In this paper, a robust MADRL control algorithm is designed to minimize the nodal voltage violation and line loss with the exploration of coupling voltage fluctuations across all the controlled nodes by coordinating PV inverters, and a physics factor is utilized to guide (physics-guided) the training policy with the expectation of a better performance compared to existing purely data-driven methods. In the proposed physics-guided multi-agent adversarial twin delayed deep deterministic (PG-MA2TD3) policy gradient algorithm, a physics factor, global sensitivity of voltage (GSV), is properly embedded in the algorithm to measure the influence of the nodal voltage fluctuation on voltage violations on the other controlled nodes with PV inverters and this GSV is shared in the learning center to guide the centralized learning and decentralized execution process. The multi-agent adversarial learning (MAAL) embedded with the GSV to seek an adaptive descend gradient for reducing the Q-value function appropriately rather than always assuming the worst case. Therefore, this physics-guided method can reduce the conservation and provide significantly better reward. Finally, the proposed algorithm is compared with several other methods on IEEE 33-bus, 141-bus and 322-bus with three-year data in Portuguese and the results indicate the proposed method can obtain the minimal voltage fluctuation and the best reward in the comparisons.
引用
收藏
页码:922 / 933
页数:12
相关论文
共 50 条
  • [31] Robust Optimal Formation Control of Heterogeneous Multi-Agent System via Reinforcement Learning
    Lin, Wei
    Zhao, Wanbing
    Liu, Hao
    IEEE ACCESS, 2020, 8 (08): : 218424 - 218432
  • [32] Resource Allocation in Multi-cell NOMA Systems with Multi-Agent Deep Reinforcement Learning
    Wang, Shichao
    Wang, Xiaoming
    Zhang, Yuhan
    Xu, Youyun
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [33] Reinforcement learning intermittent optimal formation control for multi-agent systems with disturbances
    Liu, Erliang
    Miao, Guoying
    Hu, Jingyu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [34] A Multi-Agent Deep Reinforcement Learning Based Voltage Regulation Using Coordinated PV Inverters
    Cao, Di
    Hu, Weihao
    Zhao, Junbo
    Huang, Qi
    Chen, Zhe
    Blaabjerg, Frede
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (05) : 4120 - 4123
  • [35] Learning to school in dense configurations with multi-agent deep reinforcement learning
    Zhu, Yi
    Pang, Jian-Hua
    Gao, Tong
    Tian, Fang-Bao
    BIOINSPIRATION & BIOMIMETICS, 2023, 18 (01)
  • [36] Multi-agent deep reinforcement learning for task offloading in group distributed manufacturing systems
    Xiong, Jianyu
    Guo, Peng
    Wang, Yi
    Meng, Xiangyin
    Zhang, Jian
    Qian, Linmao
    Yu, Zhenglin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 118
  • [37] Applications of Multi-Agent Deep Reinforcement Learning: Models and Algorithms
    Ibrahim, Abdikarim Mohamed
    Yau, Kok-Lim Alvin
    Chong, Yung-Wey
    Wu, Celimuge
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [38] Robust Regional Coordination of Inverter-Based Volt/Var Control via Multi-Agent Deep Reinforcement Learning
    Liu, Hangyue
    Zhang, Cuo
    Chai, Qingmian
    Meng, Ke
    Guo, Qinglai
    Dong, Zhao Yang
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (06) : 5420 - 5433
  • [39] Multi-agent Deep Reinforcement Learning for Microgrid Energy Scheduling
    Zuo, Zhiqiang
    Li, Zhi
    Wang, Yijing
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6184 - 6189
  • [40] Multi-Agent Deep Reinforcement Learning Method for EV Charging Station Game
    Qian, Tao
    Shao, Chengcheng
    Li, Xuliang
    Wang, Xiuli
    Chen, Zhiping
    Shahidehpour, Mohammad
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (03) : 1682 - 1694