Physics-Guided Multi-Agent Deep Reinforcement Learning for Robust Active Voltage Control in Electrical Distribution Systems

被引:4
作者
Chen, Pengcheng [1 ]
Liu, Shichao [1 ]
Wang, Xiaozhe [2 ]
Kamwa, Innocent [3 ]
机构
[1] Carleton Univ, Dept Elect, Ottawa, ON K1S 5B6, Canada
[2] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0G4, Canada
[3] Laval Univ, Dept Elect & Comp Sci Engn, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Distribution networks; Voltage fluctuations; active voltage control; multi-agent deep reinforcement learning; multi-agent adversarial learning; static var compensators; INTERFEROMETRIC RECEIVER; FRONT-END; POWER; MULTIFUNCTION; CALIBRATION; STANDARD; ANTENNA; DESIGN; GHZ;
D O I
10.1109/TCSI.2023.3340691
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although several multi-agent deep reinforcement learning (MADRL) algorithms have been employed in power distribution networks configured with high penetration level of Photovoltaic (PV) generators for active voltage control (AVC), the impact of the voltage fluctuation of a single PV node on voltage violations of other PV nodes in the network is ignored. Consequently, it leads to the conservativeness of the existing MADRL based AVC algorithms. In this paper, a robust MADRL control algorithm is designed to minimize the nodal voltage violation and line loss with the exploration of coupling voltage fluctuations across all the controlled nodes by coordinating PV inverters, and a physics factor is utilized to guide (physics-guided) the training policy with the expectation of a better performance compared to existing purely data-driven methods. In the proposed physics-guided multi-agent adversarial twin delayed deep deterministic (PG-MA2TD3) policy gradient algorithm, a physics factor, global sensitivity of voltage (GSV), is properly embedded in the algorithm to measure the influence of the nodal voltage fluctuation on voltage violations on the other controlled nodes with PV inverters and this GSV is shared in the learning center to guide the centralized learning and decentralized execution process. The multi-agent adversarial learning (MAAL) embedded with the GSV to seek an adaptive descend gradient for reducing the Q-value function appropriately rather than always assuming the worst case. Therefore, this physics-guided method can reduce the conservation and provide significantly better reward. Finally, the proposed algorithm is compared with several other methods on IEEE 33-bus, 141-bus and 322-bus with three-year data in Portuguese and the results indicate the proposed method can obtain the minimal voltage fluctuation and the best reward in the comparisons.
引用
收藏
页码:922 / 933
页数:12
相关论文
共 50 条
  • [21] Strategic Interaction Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Chen, Yiting
    Shen, Lin-Cheng
    IEEE ACCESS, 2020, 8 : 119000 - 119009
  • [22] Competitive Evolution Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Chen, Yiting
    Li, Jie
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [23] Sparse communication in multi-agent deep reinforcement learning
    Han, Shuai
    Dastani, Mehdi
    Wang, Shihan
    NEUROCOMPUTING, 2025, 625
  • [24] Research Progress of Multi-Agent Deep Reinforcement Learning
    Ding, Shi-Feiu
    Du, Weiu
    Zhang, Jianu
    Guo, Li-Liu
    Ding, Ding
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (07): : 1547 - 1567
  • [25] Double-Timescale Multi-Agent Deep Reinforcement Learning for Flexible Payload in VHTS Systems
    Feng, Linqing
    Zhang, Cheng
    Zhang, Qiuyang
    Zeng, Lingchao
    Qin, Pengfei
    Wang, Ying
    ELECTRONICS, 2024, 13 (14)
  • [26] A Large-Scale Multi-Agent Deep Reinforcement Learning Method for Cooperative Output Voltage Control of PEMFCs
    Li, Jiawen
    Cui, Haoyang
    Jiang, Wei
    Yu, Hengwen
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (01): : 78 - 94
  • [27] Optimal control method of HVAC based on multi-agent deep reinforcement learning
    Fu, Qiming
    Chen, Xiyao
    Ma, Shuai
    Fang, Nengwei
    Xing, Bin
    Chen, Jianping
    ENERGY AND BUILDINGS, 2022, 270
  • [28] Stabilizing Voltage in Power Distribution Networks via Multi-Agent Reinforcement Learning with Transformer
    Wang, Minrui
    Feng, Mingxiao
    Zhou, Wengang
    Li, Houqiang
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 1899 - 1909
  • [29] Physics-Informed Graphical Representation-Enabled Deep Reinforcement Learning for Robust Distribution System Voltage Control
    Cao, Di
    Zhao, Junbo
    Hu, Jiaxiang
    Pei, Yansong
    Huang, Qi
    Chen, Zhe
    Hu, Weihao
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (01) : 233 - 246
  • [30] Multi-agent graph reinforcement learning for decentralized Volt-VAR control in power distribution systems
    Hu, Daner
    Li, Zichen
    Ye, Zhenhui
    Peng, Yonggang
    Xi, Wei
    Cai, Tiantian
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 155