Multi-modal Pathological Pre-training via Masked Autoencoders for Breast Cancer Diagnosis

被引:1
作者
Lu, Mengkang [1 ]
Wang, Tianyi [1 ]
Xia, Yong [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Engn, Natl Engn Lab Integrated Aerospace Ground Ocean B, Xian 710072, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VI | 2023年 / 14225卷
基金
中国国家自然科学基金;
关键词
Breast cancer; Hematoxylin and eosin staining; Immunohistochemical staining; Multi-modal pre-training;
D O I
10.1007/978-3-031-43987-2_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Breast cancer (BC) is one of the most common cancers identified globally among women, which has become the leading cause of death. Multi-modal pathological images contain different information for BC diagnosis. Hematoxylin and eosin (H&E) staining images could reveal a considerable amount of microscopic anatomy. Immunohistochemical (IHC) staining images provide the evaluation of the expression of various biomarkers, such as the human epidermal growth factor receptor (HER2) hybridization. In this paper, we propose a multi-modal pre-training model via pathological images for BC diagnosis. The proposed pre-training model contains three modules: (1) themodal-fusion encoder, (2) the mixed attention, and (3) the modal-specific decoders. The pre-trained model could be performed on multiple relevant tasks (IHC Reconstruction and IHC classification). The experiments on two datasets (HEROHE Challenge and BCI Challenge) show state-of-the-art results.
引用
收藏
页码:457 / 466
页数:10
相关论文
共 28 条
  • [1] BACH: Grand challenge on breast cancer histology images
    Aresta, Guilherme
    Araujo, Teresa
    Kwok, Scotty
    Chennamsetty, Sai Saketh
    Safwan, Mohammed
    Alex, Varghese
    Marami, Bahram
    Prastawa, Marcel
    Chan, Monica
    Donovan, Michael
    Fernandez, Gerardo
    Zeineh, Jack
    Kohl, Matthias
    Walz, Christoph
    Ludwig, Florian
    Braunewell, Stefan
    Baust, Maximilian
    Quoc Dang Vu
    Minh Nguyen Nhat To
    Kim, Eal
    Kwak, Jin Tae
    Galal, Sameh
    Sanchez-Freire, Veronica
    Brancati, Nadia
    Frucci, Maria
    Riccio, Daniel
    Wang, Yaqi
    Sun, Lingling
    Ma, Kaiqiang
    Fang, Jiannan
    Kone, Ismael
    Boulmane, Lahsen
    Campilho, Aurelio
    Eloy, Catarina
    Polonia, Antonio
    Aguiar, Paulo
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 56 : 122 - 139
  • [2] MultiMAE: Multi-modal Multi-task Masked Autoencoders
    Bachmann, Roman
    Mizrahi, David
    Atanov, Andrei
    Zamir, Amir
    [J]. COMPUTER VISION, ECCV 2022, PT XXXVII, 2022, 13697 : 348 - 367
  • [3] Baevski A, 2022, Arxiv, DOI arXiv:2212.07525
  • [4] Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer
    Bejnordi, Babak Ehteshami
    Veta, Mitko
    van Diest, Paul Johannes
    van Ginneken, Bram
    Karssemeijer, Nico
    Litjens, Geert
    van der Laak, Jeroen A. W. M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22): : 2199 - 2210
  • [5] VLP: A Survey on Vision-language Pre-training
    Chen, Fei-Long
    Zhang, Du-Zhen
    Han, Ming-Lun
    Chen, Xiu-Yi
    Shi, Jing
    Xu, Shuang
    Xu, Bo
    [J]. MACHINE INTELLIGENCE RESEARCH, 2023, 20 (01) : 38 - 56
  • [6] Multimodal Co-Attention Transformer for Survival Prediction in Gigapixel Whole Slide Images
    Chen, Richard J.
    Lu, Ming Y.
    Weng, Wei-Hung
    Chen, Tiffany Y.
    Williamson, Drew F. K.
    Manz, Trevor
    Shady, Maha
    Mahmood, Faisal
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3995 - 4005
  • [7] Chen RJ, 2022, IEEE T MED IMAGING, V41, P757, DOI [10.1109/TMI.2020.3021387, 10.1109/TITS.2020.3030218]
  • [8] Multi-modal Masked Autoencoders for Medical Vision-and-Language Pre-training
    Chen, Zhihong
    Du, Yuhao
    Hu, Jinpeng
    Liu, Yang
    Li, Guanbin
    Wan, Xiang
    Chang, Tsung-Hui
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 : 679 - 689
  • [9] HEROHE Challenge: Predicting HER2 Status in Breast Cancer from Hematoxylin-Eosin Whole-Slide Imaging
    Conde-Sousa, Eduardo
    Vale, Joao
    Feng, Ming
    Xu, Kele
    Wang, Yin
    Della Mea, Vincenzo
    La Barbera, David
    Montahaei, Ehsan
    Baghshah, Mahdieh
    Turzynski, Andreas
    Gildenblat, Jacob
    Klaiman, Eldad
    Hong, Yiyu
    Aresta, Guilherme
    Araujo, Teresa
    Aguiar, Paulo
    Eloy, Catarina
    Polonia, Antonio
    [J]. JOURNAL OF IMAGING, 2022, 8 (08)
  • [10] SuperPoint: Self-Supervised Interest Point Detection and Description
    DeTone, Daniel
    Malisiewicz, Tomasz
    Rabinovich, Andrew
    [J]. PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 337 - 349