SELF-SUPERVISED TEMPORAL ANALYSIS OF SPATIOTEMPORAL DATA

被引:0
|
作者
Cao, Yi [1 ]
Ganguli, Swetava [1 ]
Pandey, Vipul [1 ]
机构
[1] Apple, Cupertino, CA 90210 USA
关键词
Discrete Fourier Transform (DFT); Autoencoders; Semantic Segmentation; Deep Learning;
D O I
10.1109/IGARSS52108.2023.10282482
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
There exists a correlation between geospatial activity temporal patterns and type of land use. A novel self-supervised approach is proposed to stratify landscape based on mobility activity time series. First, the time series signal is transformed to the frequency domain and then compressed into task-agnostic temporal embeddings by a contractive autoencoder, which preserves cyclic temporal patterns observed in time series. The pixel-wise embeddings are converted to image-like channels that can be used for task-based, multimodal modeling of downstream geospatial tasks using deep semantic segmentation. Experiments show that temporal embeddings are semantically meaningful representations of time series data and are effective across different tasks such as classifying residential and commercial areas.
引用
收藏
页码:4856 / 4859
页数:4
相关论文
共 50 条
  • [41] Spatial-then-Temporal Self-Supervised Learning for Video Correspondence
    Li, Rui
    Liu, Dong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 2279 - 2288
  • [42] Self-Supervised Exploration via Temporal Inconsistency in Reinforcement Learning
    Gao Z.
    Xu K.
    Zhai Y.
    Ding B.
    Feng D.
    Mao X.
    Wang H.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (11): : 1 - 10
  • [43] Temporal knowledge completion enhanced self-supervised entity alignment
    Fu, Teng
    Zhou, Gang
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, : 43 - 62
  • [44] Self-supervised Learning for Endoscopic Video Analysis
    Hirsch, Roy
    Caron, Mathilde
    Cohen, Regev
    Livne, Amir
    Shapiro, Ron
    Golany, Tomer
    Goldenberg, Roman
    Freedman, Daniel
    Rivlin, Ehud
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT V, 2023, 14224 : 569 - 578
  • [45] SELF-SUPERVISED LEARNING FOR INFANT CRY ANALYSIS
    Gorin, Arsenii
    Subakan, Cem
    Abdoli, Sajjad
    Wang, Junhao
    Latremouille, Samantha
    Onu, Charles
    2023 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW, 2023,
  • [46] SIMILARITY ANALYSIS OF SELF-SUPERVISED SPEECH REPRESENTATIONS
    Chung, Yu-An
    Belinkov, Yonatan
    Glass, James
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3040 - 3044
  • [47] Self-supervised learning for gene classification on microarray data
    Lu, Yijuan
    Tian, Qi
    Sanchez, Maribel
    Wang, Yufeng
    2006 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS, 2006, : 105 - +
  • [48] A method to challenge symmetries in data with self-supervised learning
    Tombs, Rupert
    Lester, Christopher G.
    JOURNAL OF INSTRUMENTATION, 2022, 17 (08)
  • [49] Self-supervised learning for denoising of multidimensional MRI data
    Kang, Beomgu
    Lee, Wonil
    Seo, Hyunseok
    Heo, Hye-Young
    Park, Hyunwook
    MAGNETIC RESONANCE IN MEDICINE, 2024, 92 (05) : 1980 - 1994
  • [50] Self-supervised generative learning for sequential data prediction
    Ke Xu
    Guoqiang Zhong
    Zhaoyang Deng
    Kang Zhang
    Kaizhu Huang
    Applied Intelligence, 2023, 53 : 20675 - 20689