On Bounds of k-Fractional Integral Operators with Mittag-Leffler Kernels for Several Types of Exponentially Convexities

被引:1
|
作者
Farid, Ghulam [1 ]
Khan, Hala Safdar [1 ]
Tawfiq, Ferdous M. O. [2 ]
Ro, Jong-Suk [3 ,4 ]
Zainab, Saira [5 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock 43600, Pakistan
[2] King Saud Univ, Coll Sci, Dept Math, POB 22452, Riyadh 11495, Saudi Arabia
[3] Chung Ang Univ, Sch Elect & Elect Engn, Seoul 06974, South Korea
[4] Chung Ang Univ, Dept Intelligent Energy & Ind, Seoul 06974, South Korea
[5] Natl Univ Sci & Technol NUST, Sch Elect Engn & Comp Sci SEECS, H 12 Sect, Islamabad 44000, Pakistan
基金
新加坡国家研究基金会;
关键词
convex function; exponentially (& alpha; h - m)-p-convex function; Mittag-Leffler function; generalized integral operators; INEQUALITIES; EXTENSION; HADAMARD;
D O I
10.3390/fractalfract7080617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to study the bounds of k-integral operators with the Mittag-Leffler kernel in a unified form. To achieve these bounds, the definition of exponentially (a,h-m)-p-convexity is utilized frequently. In addition, a fractional Hadamard type inequality which shows the upper and lower bounds of k-integral operators simultaneously is presented. The results are directly linked with the results of many published articles.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Bounds of fractional integral operators containing Mittag-Leffler function
    Farid, Ghulam
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2019, 81 (04): : 133 - 142
  • [2] BOUNDS OF FRACTIONAL INTEGRAL OPERATORS CONTAINING MITTAG-LEFFLER FUNCTION
    Farid, Ghulam
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2019, 81 (04): : 133 - 142
  • [3] On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions
    Saddiqa, Maryam
    Farid, Ghulam
    Ullah, Saleem
    Jung, Chahn Yong
    Shim, Soo Hak
    AIMS MATHEMATICS, 2021, 6 (06): : 6454 - 6468
  • [4] Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions
    Farid, Ghulam
    Andric, Maja
    Saddiqa, Maryam
    Pecaric, Josip
    Jung, Chahn Yong
    AIMS MATHEMATICS, 2020, 5 (06): : 7332 - 7349
  • [5] ON FRACTIONAL MITTAG-LEFFLER OPERATORS
    Ansari, Alireza
    Darani, Mohammadreza Ahmadi
    Moradi, Mohammad
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 70 (01) : 119 - 131
  • [6] Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals
    Abdeljawad, Thabet
    CHAOS, 2019, 29 (02)
  • [7] Fractional difference operators with discrete generalized Mittag-Leffler kernels
    Abdeljawad, Thabet
    CHAOS SOLITONS & FRACTALS, 2019, 126 : 315 - 324
  • [8] On Refinement of Bounds of Fractional Integral Operators Containing Extended Generalized Mittag-Leffler Functions
    Demirel, Ayse Kuebra
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (03): : 279 - 300
  • [9] GENERALIZED MITTAG-LEFFLER KERNELS AND GENERALIZED SCALING OPERATORS IN MITTAG-LEFFLER ANALYSIS
    Bock, Wolfgang
    Gumanoy, Ang Elyn
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2021, 27 (04): : 308 - 319
  • [10] Multivariate Mittag-Leffler function and related fractional integral operators
    Rahman, Gauhar
    Samraiz, Muhammad
    Alqudah, Manar A.
    Abdeljawad, Thabet
    AIMS MATHEMATICS, 2022, 8 (06): : 13276 - 13293