FUTR3D: A Unified Sensor Fusion Framework for 3D Detection

被引:113
作者
Chen, Xuanyao [1 ,2 ]
Zhang, Tianyuan [1 ,3 ]
Wang, Yue [5 ]
Wang, Yilun [6 ]
Zhao, Hang [1 ,4 ]
机构
[1] Shanghai Qi Zhi Inst, Shanghai, Peoples R China
[2] Fudan Univ, Shanghai, Peoples R China
[3] CMU, Pittsburgh, PA USA
[4] Tsinghua Univ, Beijing, Peoples R China
[5] MIT, Cambridge, MA USA
[6] Li Auto, Beijing, Peoples R China
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW | 2023年
关键词
D O I
10.1109/CVPRW59228.2023.00022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sensor fusion is an essential topic in many perception systems, such as autonomous driving and robotics. Existing multi-modal 3D detection models usually involve customized designs depending on the sensor combinations or setups. In this work, we propose the first unified end-to-end sensor fusion framework for 3D detection, named FUTR3D, which can be used in (almost) any sensor configuration. FUTR3D employs a query-based ModalityAgnostic Feature Sampler (MAFS), together with a transformer decoder with a set-to-set loss for 3D detection, thus avoiding using late fusion heuristics and post-processing tricks. We validate the effectiveness of our framework on various combinations of cameras, low-resolution LiDARs, high-resolution LiDARs, and Radars. On NuScenes dataset, FUTR3D achieves better performance over specifically designed methods across different sensor combinations. Moreover, FUTR3D achieves great flexibility with different sensor configurations and enables low-cost autonomous driving. For example, only using a 4-beam LiDAR with cameras, FUTR3D (58.0 mAP) surpasses state-of-the-art 3D detection model [41] (56.6 mAP) using a 32-beam LiDAR. Our code is available on the project page.
引用
收藏
页码:172 / 181
页数:10
相关论文
共 47 条
[1]   TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers [J].
Bai, Xuyang ;
Hu, Zeyu ;
Zhu, Xinge ;
Huang, Qingqiu ;
Chen, Yilun ;
Fu, Hangbo ;
Tai, Chiew-Lan .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1080-1089
[2]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[3]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[4]  
Chadwick S, 2019, IEEE INT CONF ROBOT, P8311, DOI [10.1109/ICRA.2019.8794312, 10.1109/icra.2019.8794312]
[5]   To the Point: Efficient 3D Object Detection in the Range Image with Graph Convolution Kernels [J].
Chai, Yuning ;
Sun, Pei ;
Ngiam, Jiquan ;
Wang, Weiyue ;
Caine, Benjamin ;
Vasudevan, Vijay ;
Zhang, Xiao ;
Anguelov, Dragomir .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :15995-16004
[6]  
Chai Yuning, RSN RANGE SPARSE NET
[7]   Argoverse: 3D Tracking and Forecasting with Rich Maps [J].
Chang, Ming-Fang ;
Lambert, John ;
Sangkloy, Patsorn ;
Singh, Jagjeet ;
Bak, Slawomir ;
Hartnett, Andrew ;
Wang, De ;
Carr, Peter ;
Lucey, Simon ;
Ramanan, Deva ;
Hays, James .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8740-8749
[8]  
Chen Xiaozhi, 2017, CVPR, P2
[9]  
Fan Lue, RANGEDET DEFENSE RAN
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778