Sources of Calcium at Connexin 36 Gap Junctions in the Retina

被引:1
作者
Lee, Yuan-Hao [1 ]
Kothmann, W. Wade [2 ]
Lin, Ya-Ping [1 ]
Chuang, Alice Z. [1 ]
Diamond, Jeffrey S. [2 ]
O'Brien, John [1 ,3 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Richard S Ruiz Dept Ophthalmol & Visual Sci, Houston, TX 77030 USA
[2] Natl Inst Neurol Dis & Stroke, Synapt Physiol Sect, Bethesda, MD 20892 USA
[3] MD Anderson Canc Ctr UTHealth Grad Sch Biomed Sci, Grad Sch Biomed Sci, Houston, TX 77030 USA
基金
美国国家卫生研究院;
关键词
Key words: calcium; Connexin; 36; electrical synapse; retina; SRRF; ACTIVITY-DEPENDENT PLASTICITY; LONG-TERM MODULATION; AII AMACRINE CELLS; GANGLION-CELLS; ELECTRICAL SYNAPSES; ROD PATHWAYS; EXPRESSION; ENHANCEMENT; RECEPTORS; CHANNELS;
D O I
10.1523/ENEURO.0493-22.2023
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Synaptic plasticity is a fundamental feature of the CNS that controls the magnitude of signal transmission between communicating cells. Many electrical synapses exhibit substantial plasticity that modulates the degree of coupling within groups of neurons, alters the fidelity of signal transmission, or even reconfigures functional circuits. In several known examples, such plasticity depends on calcium and is associated with neuronal activity. Calcium-driven signaling is known to promote potentiation of electrical synapses in fish Mauthner cells, mammalian retinal AII amacrine cells, and inferior olive neurons, and to promote depression in thalamic reticular neurons. To measure local calcium dynamics in situ, we developed a transgenic mouse expressing a GCaMP calcium biosensor fused to Connexin 36 (Cx36) at electrical synapses. We examined the sources of calcium for activity-dependent plasticity in retina slices using confocal or Super-Resolution Radial Fluctuations imaging. More than half of Cx36-GCaMP gap junctions responded to puffs of glutamate with transient increases in fluorescence. The responses were strongly dependent on NMDA receptors, in keeping with known activity-dependent signaling in some amacrine cells. We also found that some responses depended on the activity of voltage-gated calcium channels, representing a previously unrecognized source of calcium to control retinal electrical synaptic plasticity. The high prevalence of calcium signals at electrical synapses in response to glutamate application indicates that a large fraction of electrical synapses has the potential to be regulated by neuronal activity. This provides a means to tune circuit connectivity dynamically based on local activity.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Connexin36 Expression in the Mammalian Retina: A Multiple-Species Comparison [J].
Kovacs-Oller, Tams ;
Debertin, Gabor ;
Balogh, Marton ;
Ganczer, Alma ;
Orban, Jozsef ;
Nyitrai, Miklos ;
Balogh, Lajos ;
Kantor, Orsolya ;
Volgyi, Bela .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2017, 11
[42]   Connexin-36 distribution and layer-specific topography in the cat retina [J].
Telkes, Ildiko ;
Kobor, Peter ;
Orban, Jozsef ;
Kovacs-Oller, Tamas ;
Volgyi, Bela ;
Buzas, Peter .
BRAIN STRUCTURE & FUNCTION, 2019, 224 (06) :2183-2197
[43]   Interrelationships Between Spinal Sympathetic Preganglionic Neurons, Autonomic Systems and Electrical Synapses Formed by Connexin36-containing Gap Junctions [J].
Recabal-Beyer, A. ;
Tavakoli, H. ;
Senecal, J. M. M. ;
Stecina, K. ;
Nagy, J. I. .
NEUROSCIENCE, 2023, 523 :31-46
[44]   Connexin36 vs. connexin32, "miniature" neuronal gap junctions, and limited electrotonic coupling in rodent suprachiasmatic nucleus [J].
Rash, J. E. ;
Olson, C. O. ;
Pouliot, W. A. ;
Davidson, K. G. V. ;
Yasumura, T. ;
Furman, C. S. ;
Royer, S. ;
Kamasawa, N. ;
Nagy, J. I. ;
Dudek, F. E. .
NEUROSCIENCE, 2007, 149 (02) :350-371
[45]   Assembly mechanisms of the neuronal gap junction channel connexin 36 elucidated by Cryo-EM [J].
Mao, Wenxuan ;
Chen, Shanshuang .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2024, 754
[46]   Sustained Extracellular Electrical Stimulation Modulates the Permeability of Gap Junctions in rd1 Mouse Retina with Photoreceptor Degeneration [J].
Stuermer, Sophie ;
Bolz, Sylvia ;
Zrenner, Eberhart ;
Ueffing, Marius ;
Haq, Wadood .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (03)
[47]   Connexin 43 across the Vasculature: Gap Junctions and Beyond [J].
Sedovy, Meghan W. ;
Leng, Xinyan ;
Leaf, Melissa R. ;
Iqbal, Farwah ;
Payne, Laura Beth ;
Chappell, John C. ;
Johnstone, Scott R. .
JOURNAL OF VASCULAR RESEARCH, 2023, 60 (02) :101-113
[48]   Gap Junctions and Connexin Hemichannels Underpin Hemostasis and Thrombosis [J].
Vaiyapuri, Sakthivel ;
Jones, Chris I. ;
Sasikumar, Parvathy ;
Moraes, Leonardo A. ;
Munger, Stephanie J. ;
Wright, Joy R. ;
Ali, Marfoua S. ;
Sage, Tanya ;
Kaiser, William J. ;
Tucker, Katherine L. ;
Stain, Christopher J. ;
Bye, Alexander P. ;
Jones, Sarah ;
Oviedo-Orta, Ernesto ;
Simon, Alexander M. ;
Mahaut-Smith, Martyn P. ;
Gibbins, Jonathan M. .
CIRCULATION, 2012, 125 (20) :2479-+
[49]   Remodelling of gap junctions and connexin expression in heart disease [J].
Severs, NJ ;
Dupont, E ;
Coppen, S ;
Halliday, D ;
Inett, E ;
Baylis, D ;
Rothery, S .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2004, 1662 (1-2) :138-148
[50]   The role of the cytoskeleton in the formation of gap junctions by Connexin 30 [J].
Qu, Chunyan ;
Gardner, Phyllis ;
Schrijver, Iris .
EXPERIMENTAL CELL RESEARCH, 2009, 315 (10) :1683-1692