Volterra-type operators mapping weighted Dirichlet space into H8

被引:0
作者
Pelaez, Jose Angel [1 ]
Rattya, Jouni [2 ]
Wu, Fanglei [2 ]
机构
[1] Univ Malaga, Dept Anal Matematico, Campus Teatinos, Malaga 29071, Spain
[2] Univ Eastern Finland, Dept Phys & Math, POB 111, Joensuu 80101, Finland
关键词
Bergman space; Bloch space; BMOA; Dirichlet space; Dual space; Hardy space; Integral operator; Volterra-operator; Zygmund space; ANALYTIC-FUNCTIONS; BERGMAN SPACES; HARDY;
D O I
10.1007/s00209-023-03290-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of describing the analytic functions g on the unit disc such that the integral operator T-g(f)(z) = ?(z)(0) f (?)g'(?)d? is bounded (or compact) from a Banach space (or complete metric space) X of analytic functions to the Hardy space H-8 is a tough problem, and remains unsettled in many cases. For analytic functions g with non-negative Maclaurin coefficients, we describe the boundedness and compactness of T-g acting from a weighted Dirichlet space D-?(p), induced by an upper doubling weight ?, to H-8. We also characterize, in terms of neat conditions on ?, the upper doubling weights for which T-g : D-?(p) ? H-8 is bounded (or compact) only if g is constant.
引用
收藏
页数:34
相关论文
共 26 条
[1]   An integral operator on Hp and Hardy's inequality [J].
Aleman, A ;
Cima, JA .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 85 (1) :157-176
[2]  
Aleman A, 1997, INDIANA U MATH J, V46, P337
[3]   Some integral operators acting on H a [J].
Anderson, Austin ;
Jovovic, Mirjana ;
Smith, Wayne .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 80 (02) :275-291
[4]   Bergman projection induced by radial weight [J].
Angel Pelaez, Jose ;
Rattya, Jouni .
ADVANCES IN MATHEMATICS, 2021, 391
[5]   Harmonic conjugates on Bergman spaces induced by doubling weights [J].
Angel Pelaez, Jose ;
Rattya, Jouni .
ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (02)
[6]   Embedding Bergman spaces into tent spaces [J].
Angel Pelaez, Jose ;
Rattya, Jouni ;
Sierra, Kian .
MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (3-4) :1215-1237
[7]   Embedding theorems for Bergman spaces via harmonic analysis [J].
Angel Pelaez, Jose ;
Rattya, Jouni .
MATHEMATISCHE ANNALEN, 2015, 362 (1-2) :205-239
[8]  
Peláez JA, 2014, MEM AM MATH SOC, V227, P1
[9]   Generalized Hilbert operators on weighted Bergman spaces [J].
Angel Pelaez, Jose ;
Rattya, Jouni .
ADVANCES IN MATHEMATICS, 2013, 240 :227-267
[10]   Integral operators mapping into the space of bounded analytic functions [J].
Contreras, Manuel D. ;
Pelaez, Jose A. ;
Pommerenke, Christian ;
Rattya, Jouni .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (10) :2899-2943