Biomaterial-assisted targeted and controlled delivery of CRISPR/Cas9 for precise gene editing

被引:31
|
作者
Iqbal, Zoya [1 ,2 ]
Rehman, Khurrum [3 ]
Xia, Jiang [4 ]
Shabbir, Maryam [5 ]
Zaman, Muhammad [6 ]
Liang, Yujie [7 ]
Duan, Li [1 ,2 ]
机构
[1] Shenzhen Univ, Affiliated Hosp 1, Shenzhen Peoples Hosp 2, Dept Orthoped, Shenzhen 518035, Guangdong, Peoples R China
[2] Shenzhen Second Peoples Hosp, Guangdong Prov Res Ctr Artificial Intelligence & D, Shenzhen 518035, Guangdong, Peoples R China
[3] Univ Agr, Dept Allied Hlth Sci, Dera Ismail Khan, Pakistan
[4] Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China
[5] Univ Lahore, Dept Pharm, Lahore Campus, Lahore, Pakistan
[6] Univ Cent Punjab, Dept Pharm, Lahore, Pakistan
[7] Shenzhen Kangning Hosp, Shenzhen Mental Hlth Ctr, Dept Child & Adolescent Psychiat, Shenzhen 518020, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
GOLD NANOPARTICLES; GENOME; SYSTEM;
D O I
10.1039/d2bm01636b
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
RISPR-Cas9 has exhibited enormous potential in gene therapy. It can perform genome editing with single-nucleotide precision in various types of cell and tissue, providing a powerful breakthrough technology for genome editing in therapeutic development. But the limited delivery methods pose substantial challenges pertinent to safe and effective CRISPR/Cas9 delivery, thus hindering its application. These challenges should be tackled to develop next-generation genetic therapies. Biomaterial-based drug delivery systems can overcome these issues, for example using biomaterials as carriers for CRISPR/Cas9 targeted delivery, and conditional control of its function can improve precision, furnish on-demand and transient gene editing and reduce adverse consequences such as off-target events and immunogenicity, representing a promising direction for modern precision medicine. This review describes the application status and research progress of current CRISPR/Cas9 delivery approaches, including polymeric nanoparticles, liposomes, extracellular vesicles, inorganic nanoparticles and hydrogels. The unique properties of light-controlled and small-molecule drugs for spatially and temporally controlled genome editing are also illustrated. In addition, targetable delivery vehicles for the active delivery of CRISPR systems are also discussed. The perspectives to overcome the current limitations in the CRISPR/Cas9 delivery and their bench-to-bedside translation are also highlighted.
引用
收藏
页码:3762 / 3783
页数:23
相关论文
共 50 条
  • [41] The enhancement of CRISPR/Cas9 gene editing using metformin
    Rollins, Jaedyn L.
    Hall, Raquel M.
    Lemus, Clara J.
    Leisten, Lauren A.
    Johnston, Jennifer M.
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2023, 35
  • [42] CRISPR/CAS9 GENE EDITING APPLICATIONS IN CARDIOVASCULAR DISEASE
    Khouzam, J.
    Khouzam, R.
    Tivakaran, V.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2021, 69 (02) : 423 - 424
  • [43] Therapeutic gene editing in haematological disorders with CRISPR/Cas9
    Jensen, Trine I.
    Axelgaard, Esben
    Bak, Rasmus O.
    BRITISH JOURNAL OF HAEMATOLOGY, 2019, 185 (05) : 821 - 835
  • [44] Lipid and polymer mediated CRISPR/Cas9 gene editing
    Gong, Yan
    Tian, Siyu
    Xuan, Yang
    Zhang, Shubiao
    JOURNAL OF MATERIALS CHEMISTRY B, 2020, 8 (20) : 4369 - 4386
  • [45] Gene editing using CRISPR/Cas9 in neuromuscular disorders
    Gonorazky, H.
    Maani, N.
    Khattak, S.
    Ivakine, Z.
    Cohn, R.
    Dowling, J.
    NEUROMUSCULAR DISORDERS, 2016, 26 : S127 - S127
  • [46] Targeted genome editing in Caenorhabditis elegans using CRISPR/Cas9
    Farboud, Behnom
    WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY, 2017, 6 (06)
  • [47] Fanconi Anemia Gene Editing by the CRISPR/Cas9 System
    Osborn, Mark J.
    Gabriel, Richard
    Webber, Beau R.
    DeFeo, Anthony P.
    McElroy, Amber N.
    Jarjour, Jordan
    Starker, Colby G.
    Wagner, John E.
    Joung, J. Keith
    Voytas, Daniel F.
    von Kalle, Christof
    Schmidt, Manfred
    Blazar, Bruce R.
    Tolar, Jakub
    HUMAN GENE THERAPY, 2015, 26 (02) : 114 - 126
  • [48] Xenotransplantation: The Contribution of CRISPR/Cas9 Gene Editing Technology
    Zoe A. Stewart
    Current Transplantation Reports, 2022, 9 : 268 - 275
  • [49] Targeted Editing of the Epigenome with CRISPR Cas9 for Mechanistic Epigenetics.
    Hilton, I.
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2017, 58 : S42 - S42
  • [50] Xenotransplantation: The Contribution of CRISPR/Cas9 Gene Editing Technology
    Stewart, Zoe A.
    CURRENT TRANSPLANTATION REPORTS, 2022, 9 (04) : 268 - 275