Biomaterial-assisted targeted and controlled delivery of CRISPR/Cas9 for precise gene editing

被引:31
|
作者
Iqbal, Zoya [1 ,2 ]
Rehman, Khurrum [3 ]
Xia, Jiang [4 ]
Shabbir, Maryam [5 ]
Zaman, Muhammad [6 ]
Liang, Yujie [7 ]
Duan, Li [1 ,2 ]
机构
[1] Shenzhen Univ, Affiliated Hosp 1, Shenzhen Peoples Hosp 2, Dept Orthoped, Shenzhen 518035, Guangdong, Peoples R China
[2] Shenzhen Second Peoples Hosp, Guangdong Prov Res Ctr Artificial Intelligence & D, Shenzhen 518035, Guangdong, Peoples R China
[3] Univ Agr, Dept Allied Hlth Sci, Dera Ismail Khan, Pakistan
[4] Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China
[5] Univ Lahore, Dept Pharm, Lahore Campus, Lahore, Pakistan
[6] Univ Cent Punjab, Dept Pharm, Lahore, Pakistan
[7] Shenzhen Kangning Hosp, Shenzhen Mental Hlth Ctr, Dept Child & Adolescent Psychiat, Shenzhen 518020, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
GOLD NANOPARTICLES; GENOME; SYSTEM;
D O I
10.1039/d2bm01636b
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
RISPR-Cas9 has exhibited enormous potential in gene therapy. It can perform genome editing with single-nucleotide precision in various types of cell and tissue, providing a powerful breakthrough technology for genome editing in therapeutic development. But the limited delivery methods pose substantial challenges pertinent to safe and effective CRISPR/Cas9 delivery, thus hindering its application. These challenges should be tackled to develop next-generation genetic therapies. Biomaterial-based drug delivery systems can overcome these issues, for example using biomaterials as carriers for CRISPR/Cas9 targeted delivery, and conditional control of its function can improve precision, furnish on-demand and transient gene editing and reduce adverse consequences such as off-target events and immunogenicity, representing a promising direction for modern precision medicine. This review describes the application status and research progress of current CRISPR/Cas9 delivery approaches, including polymeric nanoparticles, liposomes, extracellular vesicles, inorganic nanoparticles and hydrogels. The unique properties of light-controlled and small-molecule drugs for spatially and temporally controlled genome editing are also illustrated. In addition, targetable delivery vehicles for the active delivery of CRISPR systems are also discussed. The perspectives to overcome the current limitations in the CRISPR/Cas9 delivery and their bench-to-bedside translation are also highlighted.
引用
收藏
页码:3762 / 3783
页数:23
相关论文
共 50 条
  • [1] Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing
    Hasanzadeh, Akbar
    Noori, Hamid
    Jahandideh, Atefeh
    Moghaddam, Niloofar Haeri
    Mousavi, Seyede Mahtab Kamrani
    Nourizadeh, Helena
    Saeedi, Sara
    Karimi, Mahdi
    Hamblin, Michael R.
    ACS APPLIED BIO MATERIALS, 2022, 5 (02) : 413 - 437
  • [2] CRISPR/CAS9 GENE EDITING
    不详
    CHEMICAL & ENGINEERING NEWS, 2015, : 26 - 27
  • [3] Delivery methods for CRISPR/Cas9 gene editing in crustaceans
    Xu, Sen
    Pham, Thinh
    Neupane, Swatantra
    MARINE LIFE SCIENCE & TECHNOLOGY, 2020, 2 (01) : 1 - 5
  • [4] Delivery methods for CRISPR/Cas9 gene editing in crustaceans
    Sen Xu
    Thinh Phu Pham
    Swatantra Neupane
    Marine Life Science & Technology, 2020, 2 : 1 - 5
  • [5] Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing
    Zhang, Song
    Shen, Jiangtao
    Li, Dali
    Cheng, Yiyun
    THERANOSTICS, 2021, 11 (02): : 614 - 648
  • [6] Exosomes as Targeted Delivery Platform of CRISPR/Cas9 for Therapeutic Genome Editing
    Duan, Li
    Ouyang, Kan
    Wang, Jianhong
    Xu, Limei
    Xu, Xiao
    Wen, Caining
    Xie, Yixin
    Liang, Yujie
    Xia, Jiang
    CHEMBIOCHEM, 2021, 22 (24) : 3360 - 3368
  • [7] Nanoparticle Carriers: A New Era of Precise CRISPR/Cas9 Gene Editing
    Sharma, Bhawna
    Chauhan, Iti
    Kumar, Gaurav
    Bhardwaj, Khushboo
    Tiwari, Raj Kumar
    MICRORNA, 2024,
  • [8] Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing
    Duan, Li
    Ouyang, Kan
    Xu, Xiao
    Xu, Limei
    Wen, Caining
    Zhou, Xiaoying
    Qin, Zhuan
    Xu, Zhiyi
    Sun, Wei
    Liang, Yujie
    FRONTIERS IN GENETICS, 2021, 12
  • [9] CRISPR/Cas9 Targeted Gene Editing and Cellular Engineering in Fanconi Anemia
    Osborn, Mark J.
    Lonetree, Cara-Lin
    Webber, Beau R.
    Patel, Dharmeshkumar
    Dunmire, Samantha
    DeFeo, Anthony P.
    McElroy, Amber N.
    MacMillan, Margaret L.
    Wagner, John E.
    Blazar, Bruce R.
    Tolar, Jakub
    STEM CELLS AND DEVELOPMENT, 2016, 25 (20) : 1591 - 1603
  • [10] CRISPR/Cas9 Systems: The Next Generation Gene Targeted Editing Tool
    Guo S.
    Lv Y.
    Lin Y.
    Lin K.
    Peng P.
    Wu Y.
    Peng J.
    Song S.
    Li Z.
    Liu Q.
    Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2015, 85 (2) : 377 - 387