Noncollinear density functional theory

被引:14
作者
Pu, Zhichen [1 ]
Li, Hao [1 ]
Zhang, Ning [1 ]
Jiang, Hong [1 ]
Gao, Yiqin [1 ]
Xiao, Yunlong [1 ]
Sun, Qiming [2 ]
Zhang, Yong [3 ]
Shao, Sihong [4 ,5 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[2] Axiomquant Investment Management LLC, Rong Ke Zi Xun Bldg C 1211, Beijing 100086, Peoples R China
[3] Shandong Univ, Qingdao Inst Theoret & Computat Sci, Qingdao 266237, Shandong, Peoples R China
[4] Peking Univ, CAPT, LMAM, Beijing 100871, Peoples R China
[5] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 01期
基金
中国国家自然科学基金;
关键词
GENERALIZED GRADIENT APPROXIMATION; CORRELATION-ENERGY; EXCHANGE; STATE;
D O I
10.1103/PhysRevResearch.5.013036
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An approach to generalize any kind of collinear functional in density functional theory to noncollinear functionals is proposed. This approach satisfies the correct collinear limit for any kind of functional, guaranteeing that the exact collinear functional after generalization is still exact for collinear spins. Besides, it has well-defined and numerically stable functional derivatives, a desired feature for noncollinear and spin-flip time-dependent density functional theory. Furthermore, it provides local torque, hinting at its applications in spin dynamics.
引用
收藏
页数:15
相关论文
共 62 条
[11]  
Casida M.E., 1995, Time-dependent Density-fucntional Response Theory for Molecules
[12]   Spin-orbit coupling from a two-component self-consistent approach. II. Non-collinear density functional theories [J].
Desmarais, Jacques K. ;
Komorovsky, Stanislav ;
Flament, Jean-Pierre ;
Erba, Alessandro .
JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (20)
[13]   Two-Component Noncollinear Time-Dependent Spin Density Functional Theory for Excited State Calculations [J].
Egidi, Franco ;
Sun, Shichao ;
Goings, Joshua J. ;
Scalmani, Giovanni ;
Frisch, Michael J. ;
Li, Xiaosong .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (06) :2591-2603
[14]   Transverse and longitudinal gradients of the spin magnetization in spin-density-functional theory [J].
Eich, F. G. ;
Pittalis, S. ;
Vignale, G. .
PHYSICAL REVIEW B, 2013, 88 (24)
[15]   Transverse Spin-Gradient Functional for Noncollinear Spin-Density-Functional Theory [J].
Eich, F. G. ;
Gross, E. K. U. .
PHYSICAL REVIEW LETTERS, 2013, 111 (15)
[16]   Time-dependent four-component relativistic density-functional theory for excitation energies. II. The exchange-correlation kernel [J].
Gao, J ;
Zou, WL ;
Liu, WJ ;
Xiao, YL ;
Peng, DL ;
Song, B ;
Liu, CB .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (05)
[17]  
github.com, About us
[18]   CALCULATION OF GAUSS QUADRATURE RULES [J].
GOLUB, GH ;
WELSCH, JH .
MATHEMATICS OF COMPUTATION, 1969, 23 (106) :221-&
[19]   Measurement of Areas on a Sphere Using Fibonacci and Latitude-Longitude Lattices [J].
Gonzalez, Alvaro .
MATHEMATICAL GEOSCIENCES, 2010, 42 (01) :49-64
[20]   WEIGHTED-DENSITY EXCHANGE AND LOCAL-DENSITY COULOMB CORRELATION-ENERGY FUNCTIONALS FOR FINITE SYSTEMS - APPLICATION TO ATOMS [J].
GRITSENKO, OV ;
CORDERO, NA ;
RUBIO, A ;
BALBAS, LC ;
ALONSO, JA .
PHYSICAL REVIEW A, 1993, 48 (06) :4197-4212