Identifying a Space-Dependent Source Term and the Initial Value in a Time Fractional Diffusion-Wave Equation

被引:2
|
作者
Lv, Xianli [1 ]
Feng, Xiufang [1 ]
机构
[1] Ningxia Univ, Sch Math & Stat, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
ill-posed problem; inverse spatial source problem; mollification method; error estimate; bilateral exponential kernel; IDENTIFICATION; ORDER;
D O I
10.3390/math11061521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is focused on the inverse problem of identifying the space-dependent source function and initial value of the time fractional nonhomogeneous diffusion-wave equation from noisy final time measured data in a multi-dimensional case. A mollification regularization method based on a bilateral exponential kernel is presented to solve the ill-posedness of the problem for the first time. Error estimates are obtained with an a priori strategy and an a posteriori choice rule to find the regularization parameter. Numerical experiments of interest show that our proposed method is effective and robust with respect to the perturbation noise in the data.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Identifying Space-Dependent Coefficients and the Order of Fractionality in Fractional Advection–Diffusion Equation
    Boris Maryshev
    Alain Cartalade
    Christelle Latrille
    Marie-Christine Néel
    Transport in Porous Media, 2017, 116 : 53 - 71
  • [42] Problem of Determining the Time Dependent Coefficient in the Fractional Diffusion-Wave Equation
    Z. A. Subhonova
    A. A. Rahmonov
    Lobachevskii Journal of Mathematics, 2021, 42 : 3747 - 3760
  • [43] NUMERICAL RECONSTRUCTION OF A SPACE-DEPENDENT SOURCE TERM FOR MULTIDIMENSIONAL SPACE-TIME FRACTIONAL DIFFUSION EQUATIONS
    Sidi, H. ould
    Zaky, M. A.
    EL Waled, K.
    Akgul, A.
    Hendy, A. S.
    ROMANIAN REPORTS IN PHYSICS, 2023, 75 (04)
  • [44] Problem of Determining the Time Dependent Coefficient in the Fractional Diffusion-Wave Equation
    Subhonova, Z. A.
    Rahmonov, A. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (15) : 3747 - 3760
  • [45] TIKHONOV REGULARIZATION METHOD OF AN INVERSE SPACE-DEPENDENT SOURCE PROBLEM FOR A TIME-SPACE FRACTIONAL DIFFUSION EQUATION
    Li, Jing
    Tong, Gongsheng
    Duan, Rouzi
    Qin, Shanlin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (05): : 2387 - 2401
  • [46] Landweber Iterative Method for an Inverse Source Problem of Time-Space Fractional Diffusion-Wave Equation
    Yang, Fan
    Zhang, Yan
    Li, Xiao-Xiao
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (01) : 265 - 278
  • [47] The fractional Landweber method for identifying the space source term problem for time-space fractional diffusion equation
    Fan Yang
    Qu Pu
    Xiao-Xiao Li
    Numerical Algorithms, 2021, 87 : 1229 - 1255
  • [48] The fractional Landweber method for identifying the space source term problem for time-space fractional diffusion equation
    Yang, Fan
    Pu, Qu
    Li, Xiao-Xiao
    NUMERICAL ALGORITHMS, 2021, 87 (03) : 1229 - 1255
  • [49] Cauchy problem and initial traces for fast diffusion equation with space-dependent source
    Shang, Haifeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (03): : 785 - 798
  • [50] Cauchy problem and initial traces for fast diffusion equation with space-dependent source
    Haifeng Shang
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 785 - 798