Detecting dry eye from ocular surface videos based on deep learning

被引:8
作者
Abdelmotaal, Hazem [1 ]
Hazarbasanov, Rossen [2 ,3 ,13 ]
Taneri, Suphi [4 ,5 ]
Al-Timemy, Ali [6 ,7 ]
Lavric, Alexandru [8 ]
Takahashi, Hidenori [9 ]
Yousefi, Siamak [10 ,11 ,12 ]
机构
[1] Assiut Univ, Dept Ophthalmol, Assiut 71515, Egypt
[2] Hosp Olhos CRO, Guarulhos, SP, Brazil
[3] Univ Fed Sao Paulo, Paulista Med Sch, Dept Ophthalmol & Visual Sci, Sao Paulo, Brazil
[4] Ruhr Univ, Bochum, Germany
[5] Zentrum Refrakt Chirurg, Munster, Germany
[6] Univ Baghdad, Al Khwarizmi Coll Engn, Biomed Engn Dept, Baghdad, Iraq
[7] Plymouth Univ, Cognit Inst, Ctr Robot & Neural Syst CRNS, Sch Engn Comp & Math, Plymouth, England
[8] Stefan Cel Mare Univ Suceava, Comp Elect & Automat Dept, Suceava, Romania
[9] Jichi Med Univ, Dept Ophthalmol, Shimotsuke, Tochigi, Japan
[10] Univ Tennessee, Dept Ophthalmol, Hlth Sci Ctr, Memphis, TN USA
[11] Univ Tennessee, Dept Genet Genom & Informat, Hlth Sci Ctr, Memphis, TN USA
[12] 930 Madison Ave,Suite 726, Memphis, TN 38163 USA
[13] 806 Botucatu Str Vila Clementino, BR-04023062 Sao Paulo, SP, Brazil
关键词
Convolutional neural networks; Deep learning; Machine learning; Dry eye disease; Ocular surface; Corneal video-topography; Video classification; CLASSIFICATION;
D O I
10.1016/j.jtos.2023.01.005
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Objective: To assess the performance of convolutional neural networks (CNNs) for automated diagnosis of dry eye (DE) in patients undergoing video keratoscopy based on single ocular surface video frames. Design: This retrospective cohort study included 244 ocular surface videos from 244 eyes of 244 subjects based on corneal topography. A total of 116 eyes were normal while 128 eyes had DE based on clinical evaluations. Methods: We developed a deep transfer learning model to directly identify DE from ocular surface videos. We evaluated the performance of the CNN model based on objective accuracy metrics. We assessed the clinical relevance of the findings by evaluating class activations maps. Main outcome measure: Area under the receiver operating characteristics curve (AUC), accuracy, specificity, and sensitivity. Results: The AUC of the model for discriminating normal eyes from eyes with DE was 0.98. Network activation maps suggested that the lower paracentral cornea was the most important region for detection of DE by the CNN model. Conclusions: Deep transfer learning achieved a high diagnostic accuracy in detecting DE based on non-invasive ocular surface videos at levels that may prove useful in clinical practice.
引用
收藏
页码:90 / 98
页数:9
相关论文
共 30 条
  • [1] Classification of Color-Coded Scheimpflug Camera Corneal Tomography Images Using Deep Learning
    Abdelmotaal, Hazem
    Mostafa, Magdi M.
    Mostafa, Ali N. R.
    Mohamed, Abdelsalam A.
    Abdelazeem, Khaled
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (13): : 1 - 12
  • [2] Data Augmentation for Improving Proliferative Diabetic Retinopathy Detection in Eye Fundus Images
    Araujo, Teresa
    Aresta, Guilherme
    Mendonca, Luis
    Penas, Susana
    Maia, Carolina
    Carneiro, Angela
    Mendonca, Ana Maria
    Campilho, Aurelio
    [J]. IEEE ACCESS, 2020, 8 : 182462 - 182474
  • [3] Use of a Support Vector Machine for Keratoconus and Subclinical Keratoconus Detection by Topographic and Tomographic Data
    Arbelaez, Maria Clara
    Versaci, Francesco
    Vestri, Gabriele
    Barboni, Piero
    Savini, Giacomo
    [J]. OPHTHALMOLOGY, 2012, 119 (11) : 2231 - 2238
  • [4] A CNN and LSTM Network for Eye-Blink Classification from MRI Scanner Monitoring Videos
    Bennett, Ronan
    Joshi, Shantanu H.
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3463 - 3466
  • [5] Statistical performance of support vector machines
    Blanchard, Gilles
    Bousquet, Olivier
    Massart, Pascal
    [J]. ANNALS OF STATISTICS, 2008, 36 (02) : 489 - 531
  • [6] A Deep Learning Model for Screening Multiple Abnormal Findings in Ophthalmic Ultrasonography (With Video)
    Chen, Di
    Yu, Yi
    Zhou, Yiwen
    Peng, Bin
    Wang, Yujing
    Hu, Shan
    Tian, Miao
    Wan, Shanshan
    Gao, Yuelan
    Wang, Ying
    Yan, Yulin
    Wu, Lianlian
    Yao, LiWen
    Zheng, Biqing
    Wang, Yang
    Huang, Yuqing
    Chen, Xi
    Yu, Honggang
    Yang, Yanning
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (04):
  • [7] Application of Keratograph and Fourier-Domain Optical Coherence Tomography in Measurements of Tear Meniscus Height
    Chen, Minjie
    Wei, Anji
    Xu, Jianjiang
    Zhou, Xingtao
    Hong, Jiaxu
    [J]. JOURNAL OF CLINICAL MEDICINE, 2022, 11 (05)
  • [8] TFOS DEWS II Definition and Classification Report
    Craig, Jennifer P.
    Nichols, Kelly K.
    Akpek, Esen K.
    Caffery, Barbara
    Dua, Harminder S.
    Joo, Choun-Ki
    Liu, Zuguo
    Nelson, J. Daniel
    Nichols, Jason J.
    Tsubota, Kazuo
    Stapleton, Fiona
    [J]. OCULAR SURFACE, 2017, 15 (03) : 276 - 283
  • [9] Automated Identification of Diabetic Retinopathy Using Deep Learning
    Gargeya, Rishab
    Leng, Theodore
    [J]. OPHTHALMOLOGY, 2017, 124 (07) : 962 - 969
  • [10] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1