Spanners in randomly weighted graphs: Euclidean case

被引:0
作者
Frieze, Alan [1 ]
Pegden, Wesley [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
random points; shortest paths; spanners; STRETCH FACTOR;
D O I
10.1002/jgt.22950
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a connected graph G=(V,E) $G=(V,E)$ and a length function l:E -> R $\ell :E\to {\mathbb{R}}$ we let dv,w ${d}_{v,w}$ denote the shortest distance between vertex v $v$ and vertex w $w$. A t $t$-spanner is a subset E 'subset of E $E<^>{\prime} \subseteq E$ such that if dv,w ' ${d}_{v,w}<^>{<^>{\prime} }$ denotes shortest distances in the subgraph G '=(V,E ') $G<^>{\prime} =(V,E<^>{\prime} )$ then dv,w '<= tdv,w ${d}_{v,w}<^>{<^>{\prime} }\le t{d}_{v,w}$ for all v,w is an element of V $v,w\in V$. We study the size of spanners in the following scenario: we consider a random embedding Xp ${{\mathscr{X}}}_{p}$ of Gn,p ${G}_{n,p}$ into the unit square with Euclidean edge lengths. For epsilon>0 $\epsilon \gt 0$ constant, we prove the existence w.h.p. of (1+epsilon) $(1+\epsilon )$-spanners for Xp ${{\mathscr{X}}}_{p}$ that have O epsilon(n) ${O}_{\epsilon }(n)$ edges. These spanners can be constructed in O epsilon(n2logn) ${O}_{\epsilon }({n}<^>{2}\mathrm{log}n)$ time. (We will use O epsilon ${O}_{\epsilon }$ to indicate that the hidden constant depends on epsilon $\varepsilon $). There are constraints on p $p$ preventing it going to zero too quickly.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 46 条
  • [21] Constrained Generalized Delaunay Graphs are Plane Spanners
    Bose, Prosenjit
    De Carufel, Jean-Lou
    van Renssen, Andre
    COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS, CIIS 2016, 2017, 532 : 281 - 293
  • [22] Constrained generalized Delaunay graphs are plane spanners
    Bose, Prosenjit
    De Carufel, Jean-Lou
    van Renssen, Andre
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 74 : 50 - 65
  • [23] Tree spanners on chordal graphs:: complexity and algorithms
    Brandstädt, A
    Dragan, FF
    Le, HO
    Le, VB
    THEORETICAL COMPUTER SCIENCE, 2004, 310 (1-3) : 329 - 354
  • [24] On tree 3-spanners in directed path graphs
    Panda, B. S.
    Das, Anita
    NETWORKS, 2007, 50 (03) : 203 - 210
  • [25] Scalable algorithms for compact spanners on real world graphs
    Pathak, Maulein
    Sabharwal, Yogish
    Gupta, Neelima
    PROCEEDINGS OF THE 37TH INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, ACM ICS 2023, 2023, : 386 - 397
  • [26] Tree 3-Spanners on Generalized Prisms of Graphs
    Gomez, Renzo
    Miyazawa, Flavio K.
    Wakabayashi, Yoshiko
    LATIN 2022: THEORETICAL INFORMATICS, 2022, 13568 : 557 - 573
  • [27] Additive tree 2-spanners of permutation graphs
    Chen, Hon-Chan
    Wang, Fu-Hsing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (09) : 1490 - 1497
  • [28] SPANNERS OF COMPLETE k-PARTITE GEOMETRIC GRAPHS
    Bose, Prosenjit
    Carmi, Paz
    Couture, Mathieu
    Maheshwari, Anil
    Morin, Pat
    Smid, Michiel
    SIAM JOURNAL ON COMPUTING, 2009, 38 (05) : 1803 - 1820
  • [29] Approximating the stretch factor of Euclidean graphs
    Narasimhan, G
    Smid, M
    SIAM JOURNAL ON COMPUTING, 2000, 30 (03) : 978 - 989
  • [30] On the longest path of a randomly weighted tournament
    Yuster, Raphael
    DISCRETE APPLIED MATHEMATICS, 2017, 230 : 121 - 132