Spanners in randomly weighted graphs: Euclidean case

被引:0
作者
Frieze, Alan [1 ]
Pegden, Wesley [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
random points; shortest paths; spanners; STRETCH FACTOR;
D O I
10.1002/jgt.22950
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a connected graph G=(V,E) $G=(V,E)$ and a length function l:E -> R $\ell :E\to {\mathbb{R}}$ we let dv,w ${d}_{v,w}$ denote the shortest distance between vertex v $v$ and vertex w $w$. A t $t$-spanner is a subset E 'subset of E $E<^>{\prime} \subseteq E$ such that if dv,w ' ${d}_{v,w}<^>{<^>{\prime} }$ denotes shortest distances in the subgraph G '=(V,E ') $G<^>{\prime} =(V,E<^>{\prime} )$ then dv,w '<= tdv,w ${d}_{v,w}<^>{<^>{\prime} }\le t{d}_{v,w}$ for all v,w is an element of V $v,w\in V$. We study the size of spanners in the following scenario: we consider a random embedding Xp ${{\mathscr{X}}}_{p}$ of Gn,p ${G}_{n,p}$ into the unit square with Euclidean edge lengths. For epsilon>0 $\epsilon \gt 0$ constant, we prove the existence w.h.p. of (1+epsilon) $(1+\epsilon )$-spanners for Xp ${{\mathscr{X}}}_{p}$ that have O epsilon(n) ${O}_{\epsilon }(n)$ edges. These spanners can be constructed in O epsilon(n2logn) ${O}_{\epsilon }({n}<^>{2}\mathrm{log}n)$ time. (We will use O epsilon ${O}_{\epsilon }$ to indicate that the hidden constant depends on epsilon $\varepsilon $). There are constraints on p $p$ preventing it going to zero too quickly.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 46 条
  • [1] Spanners in randomly weighted graphs: Independent edge lengths
    Frieze, Alan
    Pegden, Wesley
    DISCRETE APPLIED MATHEMATICS, 2022, 309 : 68 - 74
  • [2] ON SPANNERS AND LIGHTWEIGHT SPANNERS OF GEOMETRIC GRAPHS
    Kanj, Iyad A.
    Perkovic, Ljubomir
    Xia, Ge
    SIAM JOURNAL ON COMPUTING, 2010, 39 (06) : 2132 - 2161
  • [3] Approximating the Statistics of various Properties in Randomly Weighted Graphs
    Emek, Yuval
    Korman, Amos
    Shavitt, Yuval
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 1455 - 1467
  • [4] Drawing Graphs as Spanners
    Aichholzer, Oswin
    Borrazzo, Manuel
    Bose, Prosenjit
    Cardinal, Jean
    Frati, Fabrizio
    Morin, Pat
    Vogtenhuber, Birgit
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (03) : 774 - 795
  • [5] Spanners in sparse graphs
    Dragan, Feodor F.
    Fomin, Fedor V.
    Golovach, Petr A.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2011, 77 (06) : 1108 - 1119
  • [6] Spanners for Geodesic Graphs and Visibility Graphs
    Abam, Mohammad Ali
    ALGORITHMICA, 2018, 80 (02) : 515 - 529
  • [7] Spanners for Geodesic Graphs and Visibility Graphs
    Mohammad Ali Abam
    Algorithmica, 2018, 80 : 515 - 529
  • [8] Roundtrip Spanners and Roundtrip Routing in Directed Graphs
    Roditty, Iam
    Thorup, Mikkel
    Zwick, Uri
    ACM TRANSACTIONS ON ALGORITHMS, 2008, 4 (03)
  • [9] A fast algorithm for constructing sparse Euclidean spanners
    Das, G
    Narasimham, G
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1997, 7 (04) : 297 - 315
  • [10] Minimum weight Euclidean (1+ε)-spanners
    Toth, Csaba D.
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 118