Reducible quadrature rules constitute a well -established class of direct quadrature methods for approximating solutions to Volterra integral equations. Unlike interpolatory quadrature formulae, the reducible quadrature rule can be constructed without the need for additional calculations of moments. This paper investigates the reducible quadrature rule by employing barycentric rational interpolation to solve the underlying initial value problem and analyzes its convergence and stability. It is found that these quadrature rules exhibit high -order convergence rates accompanied by extensive stability regions. Several numerical illustrations are provided to verify the theoretical results.
机构:
Univ Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
Univ Tabriz, Res Dept Computat Algorithms & Math Models, Tabriz, Iran
Martin Luther Univ Halle Wittenberg, Inst Math, Halle, Saale, GermanyUniv Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
Abdi, A.
Berrut, J. -P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fribourg, Dept Math, CH-1700 Fribourg, SwitzerlandUniv Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
Berrut, J. -P.
Podhaisky, H.
论文数: 0引用数: 0
h-index: 0
机构:
Martin Luther Univ Halle Wittenberg, Inst Math, Halle, Saale, GermanyUniv Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
机构:
Univ Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
Univ Tabriz, Res Dept Computat Algorithms & Math Models, Tabriz, Iran
Martin Luther Univ Halle Wittenberg, Inst Math, Halle, Saale, GermanyUniv Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
Abdi, A.
Berrut, J. -P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fribourg, Dept Math, CH-1700 Fribourg, SwitzerlandUniv Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
Berrut, J. -P.
Podhaisky, H.
论文数: 0引用数: 0
h-index: 0
机构:
Martin Luther Univ Halle Wittenberg, Inst Math, Halle, Saale, GermanyUniv Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran