Cosmological coupling of nonsingular black holes

被引:17
作者
Cadoni, M. [1 ,2 ]
Sanna, A. P. [1 ,2 ]
Pitzalis, M. [1 ,2 ]
Banerjee, B. [3 ,4 ]
Murgia, R. [3 ,4 ]
Hazra, N. [3 ,4 ]
Branchesi, M. [3 ,4 ]
机构
[1] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, Italy
[2] Ist Nazl Fis Nucl, Sez Cagliari, I-09042 Monserrato, Italy
[3] Gran Sasso Sci Inst GSSI, Viale F Crispi 7, I-67100 Laquila, Italy
[4] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso LNGS, I-67100 Laquila, Italy
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2023年 / 11期
关键词
Exact solutions; black holes and black hole thermodynamics in GR and beyond; GR black holes; gravity; massive black holes;
D O I
10.1088/1475-7516/2023/11/007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that - in the framework of general relativity (GR) - if black holes (BHs) are singularity-free objects, they couple to the large-scale cosmological dynamics. We find that the leading contribution to the resulting growth of the BH mass (MBH) as a function of the scale factor a stems from the curvature term, yielding M-BH proportional to a(k), with k = 1. We demonstrate that such a linear scaling is universal for spherically-symmetric objects, and it is the only contribution in the case of regular BHs. For nonsingular horizonless compact objects we instead obtain an additional subleading model-dependent term. We conclude that GR nonsingular BHs/horizonless compact objects, although cosmologically coupled, are unlikely to be the source of dark energy. We test our prediction with astrophysical data by analysing the redshift dependence of the mass growth of supermassive BHs in a sample of elliptical galaxies at redshift z = 0.8-0.9. We also compare our theoretical prediction with higher redshift BH mass measurements obtained with the James Webb Space Telescope (JWST). We find that, while k = 1 is compatible within 1 sigma with JWST results, the data from elliptical galaxies at z = 0.8-0.9 favour values of k > 1. New samples of BHs covering larger mass and redshift ranges and more precise BH mass measurements are required to settle the issue.
引用
收藏
页数:14
相关论文
共 50 条
[31]   Notes on emergent conformal symmetry for black holes [J].
Xue, Yesheng ;
Jiang, Jie ;
Zhang, Ming .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (05)
[32]   Gravitational coupling and the cosmological constant [J].
Bisabr, Yousef .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2018, 27 (08)
[33]   Braneworld Black Holes [J].
Gregory, R. .
PHYSICS OF BLACK HOLES: A GUIDED TOUR, 2009, 769 :259-298
[34]   The nature of black holes [J].
Cai R. ;
Cao L. .
Kexue Tongbao/Chinese Science Bulletin, 2016, 61 (19) :2083-2092
[35]   QUANTIZATION OF BLACK HOLES [J].
He, Xiao-Gang ;
Ma, Bo-Qiang .
MODERN PHYSICS LETTERS A, 2011, 26 (30) :2299-2304
[36]   NAT black holes [J].
Gurses, Metin ;
Heydarzade, Yaghoub ;
Senturk, Cetin .
EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (11)
[37]   BLACK HOLES AT LHC? [J].
Galt'sov, D. V. ;
Spirin, P. A. .
PARTICLE PHYSICS AT THE YEAR OF ASTRONOMY, 2011, :34-37
[38]   Ladder symmetries of black holes and de Sitter space: love numbers and quasinormal modes [J].
Berens, Roman ;
Hui, Lam ;
Sun, Zimo .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (06)
[39]   Quantum radiation from an evaporating nonsingular black hole [J].
Frolov, Valeri P. ;
Zelnikov, Andrei .
PHYSICAL REVIEW D, 2017, 95 (12)
[40]   Stealth black holes in Aether Scalar Tensor theory [J].
Skordis, Constantinos ;
Vokrouhlicky, David M. J. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2025, (03)