Efficiency optimization in quantum computing: balancing thermodynamics and computational performance

被引:6
作者
Smierzchalski, Tomasz [1 ]
Mzaouali, Zakaria [1 ]
Deffner, Sebastian [2 ,3 ]
Gardas, Bartlomiej [1 ]
机构
[1] Polish Acad Sci, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
[2] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA
[3] Natl Quantum Lab, College Pk, MD 20740 USA
基金
美国国家科学基金会;
关键词
Quantum thermodynamics; Quantum annealing; Quantum computation;
D O I
10.1038/s41598-024-55314-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the computational efficiency and thermodynamic cost of the D-Wave quantum annealer under reverse-annealing with and without pausing. Our demonstration on the D-Wave 2000Q annealer shows that the combination of reverse-annealing and pausing leads to improved computational efficiency while minimizing the thermodynamic cost compared to reverse-annealing alone. Moreover, we find that the magnetic field has a positive impact on the performance of the quantum annealer during reverse-annealing but becomes detrimental when pausing is involved. Our results, which are reproducible, provide strategies for optimizing the performance and energy consumption of quantum annealing systems employing reverse-annealing protocols.
引用
收藏
页数:11
相关论文
共 78 条
[1]   Adiabatic quantum computation [J].
Albash, Tameem ;
Lidar, Daniel A. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[2]  
[Anonymous], 2022, Tech. Rep. D-Wave User Manual 09-1215A-D
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]   Quantum Technologies Need a Quantum Energy Initiative [J].
Auffeves, Alexia .
PRX QUANTUM, 2022, 3 (02)
[5]   The thermodynamic cost of quantum operations [J].
Bedingham, D. J. ;
Maroney, O. J. E. .
NEW JOURNAL OF PHYSICS, 2016, 18
[6]   Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning [J].
Benedetti, Marcello ;
Realpe-Gomez, John ;
Biswas, Rupak ;
Perdomo-Ortiz, Alejandro .
PHYSICAL REVIEW A, 2016, 94 (02)
[7]  
Binder F., 2018, Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, DOI DOI 10.1007/978-3-319-99046-0
[8]   Thermodynamics of a quantum annealer [J].
Buffoni, Lorenzo ;
Campisi, Michele .
QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (03)
[9]   Improved bound on entropy production in a quantum annealer [J].
Campisi, Michele ;
Buffoni, Lorenzo .
PHYSICAL REVIEW E, 2021, 104 (02)
[10]  
Carolan E, 2023, Arxiv, DOI arXiv:2304.14667