Predicting element concentrations by machine learning models in neutron activation analysis

被引:2
作者
Nguyen, Huu Nghia [1 ]
Tran, Quang Thien [1 ]
Tran, Tuan Anh [1 ]
Phan, Quang Trung [1 ]
Nguyen, Minh Dao [1 ]
Tuong, Thi Thu Huong [1 ]
Chau, Thi Nhu Quynh [1 ]
机构
[1] Dalat Nucl Res Inst, 01 Nguyen Tu Luc St, Da Lat, Vietnam
关键词
Machine learning; Neutron activation analysis; Rare earth elements; Random Forest;
D O I
10.1007/s10967-024-09424-7
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Applications for machine learning (ML), deep learning, and other artificial intelligence models have shown great promise in nuclear physics, including not only in classification systems but also in the analysis of numerical data. This study used various ML algorithms to estimate the concentrations of six rare earth elements (Sm, La, Ce, Sc, Eu, and Tb) in both archaeological and marine sediment samples. An interesting aspect of this analysis is that 80% of the 235 data points were used for training data, which included two parameters: specific activity (Asp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A}_{{\text{sp}}}$$\end{document}) and concentration (rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}) by the k0-method for the purpose of model development. The remaining 20% of the dataset was held out for testing the model's accuracy. The fundamental principle of this approach is the use of regression analysis between Asp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A}_{{\text{sp}}}$$\end{document} and rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} to construct a machine learning regression model. This machine learning model was subsequently applied to estimate element concentrations based on Asp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A}_{{\text{sp}}}$$\end{document} values obtained from gamma spectra. The mean absolute error (MAE), root mean square error (RMSE) and the statistical measure R-squared (R2) were employed for evaluating the accuracy of the predicted models. The random forest (RF) algorithm produces smaller MAE and RMSE values and achieves better R2 values compared to other algorithms. In addition, RF shows the lowest relative bias of the concentration values of elements in reference material (NIST 2711a) compared to other prediction models. The work focuses on demonstrating that machine learning models can effectively predict the concentrations of rare earth elements, even though this is a fundamental issue in NAA and one previous study has addressed this issue for one single element. The extension of the current work and potential directions for further development will be presented in the results and discussion section.
引用
收藏
页码:1759 / 1768
页数:10
相关论文
共 26 条
[1]  
Abadi Martin, 2016, Proceedings of OSDI '16: 12th USENIX Symposium on Operating Systems Design and Implementation. OSDI '16, P265
[2]   Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning [J].
Agarawal, Valay ;
Roy, Samrendra ;
Chakraborty, Anish ;
Maitra, Rahul .
JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (04)
[3]   Estimation of fusion reaction cross-sections by artificial neural networks [J].
Akkoyun, Serkan .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2020, 462 :51-54
[4]  
[Anonymous], 2018, PROFICIENCY TESTING
[5]   Artificial neural networks for NAA: proof of concept on data analysed with k0-based software [J].
Barradas, N. Pessoa ;
Farjallah, N. ;
Vieira, A. ;
Blaauw, M. .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2023, 332 (08) :3421-3429
[6]   Neural Network Approaches for Mobile Spectroscopic Gamma-Ray Source Detection [J].
Bilton, Kyle J. ;
Joshi, Tenzing H. Y. ;
Bandstra, Mark S. ;
Curtis, Joseph C. ;
Hellfeld, Daniel ;
Vetter, Kai .
JOURNAL OF NUCLEAR ENGINEERING, 2021, 2 (02) :190-206
[7]   The 2021 IAEA software intercomparison for k0-INAA [J].
Blaauw, Menno ;
D'Agostino, Giancarlo ;
di Luzio, Marco ;
Ho Manh Dung ;
Jacimovic, Radojko ;
Dias, Mauro Da Silva ;
Semmler, Renato ;
van Sluijs, Robbert ;
Barradas, Nuno Pessoa .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2023, 332 (08) :3387-3400
[8]   Colloquium: Machine learning in nuclear physics [J].
Boehnlein, Amber ;
Diefenthaler, Markus ;
Sato, Nobuo ;
Schram, Malachi ;
Ziegler, Veronique ;
Fanelli, Cristiano ;
Hjorth-Jensen, Morten ;
Horn, Tanja ;
Kuchera, Michelle P. ;
Lee, Dean ;
Nazarewicz, Witold ;
Ostroumov, Peter ;
Orginos, Kostas ;
Poon, Alan ;
Wang, Xin-Nian ;
Scheinker, Alexander ;
Smith, Michael S. ;
Pang, Long-Gang .
REVIEWS OF MODERN PHYSICS, 2022, 94 (03)
[9]  
Breiman L., 1984, Classification and regression trees, DOI [10.1201/9781315139470, DOI 10.1201/9781315139470]
[10]   Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature [J].
Chai, T. ;
Draxler, R. R. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (03) :1247-1250