Interfacial Tissue Regeneration with Bone

被引:6
作者
Steltzer, Stephanie S. [1 ,2 ]
Abraham, Adam C. [1 ]
Killian, Megan L. [1 ,2 ]
机构
[1] Univ Michigan, Med Sch, Dept Orthopaed Surg, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Med Sch, Dept Mol & Integrat Physiol, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
Osteochondral interface; Enthesis; Extracellular matrix; Mechanical loading; Cellular microenvironment; FIBROCARTILAGE CELLS; SIGNALING PATHWAY; TENDON; COLLAGEN; STEM; PROGENITORS; SCLERAXIS; ADULT; BMP;
D O I
10.1007/s11914-024-00859-1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of ReviewInterfacial tissue exists throughout the body at cartilage-to-bone (osteochondral interface) and tendon-to-bone (enthesis) interfaces. Healing of interfacial tissues is a current challenge in regenerative approaches because the interface plays a critical role in stabilizing and distributing the mechanical stress between soft tissues (e.g., cartilage and tendon) and bone. The purpose of this review is to identify new directions in the field of interfacial tissue development and physiology that can guide future regenerative strategies for improving post-injury healing.Recent FindingsCues from interfacial tissue development may guide regeneration including biological cues such as cell phenotype and growth factor signaling; structural cues such as extracellular matrix (ECM) deposition, ECM, and cell alignment; and mechanical cues such as compression, tension, shear, and the stiffness of the cellular microenvironment.SummaryIn this review, we explore new discoveries in the field of interfacial biology related to ECM remodeling, cellular metabolism, and fate. Based on emergent findings across multiple disciplines, we lay out a framework for future innovations in the design of engineered strategies for interface regeneration. Many of the key mechanisms essential for interfacial tissue development and adaptation have high potential for improving outcomes in the clinic.
引用
收藏
页码:290 / 298
页数:9
相关论文
共 110 条
[1]   The role of loading in murine models of rotator cuff disease [J].
Abraham, Adam C. ;
Fang, Fei ;
Golman, Mikhail ;
Oikonomou, Panagiotis ;
Thomopoulos, Stavros .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2022, 40 (04) :977-986
[2]   Targeting the NF-κB signaling pathway in chronic tendon disease [J].
Abraham, Adam C. ;
Shah, Shivam A. ;
Golman, Mikhail ;
Song, Lee ;
Li, Xiaoning ;
Kurtaliaj, Iden ;
Akbar, Moeed ;
Millar, Neal L. ;
Abu-Amer, Yousef ;
Galatz, Leesa M. ;
Thomopoulos, Stavros .
SCIENCE TRANSLATIONAL MEDICINE, 2019, 11 (481)
[3]   Defining the spatial-molecular map of fibrotic tendon healing and the drivers of Scleraxis-lineage cell fate and function [J].
Ackerman, Jessica E. ;
Best, Katherine T. ;
Muscat, Samantha N. ;
Pritchett, Elizabeth M. ;
Nichols, Anne E. C. ;
Wu, Chia-Lung ;
Loiselle, Alayna E. .
CELL REPORTS, 2022, 41 (08)
[4]   Cell non-autonomous functions of S100a4 drive fibrotic tendon healing [J].
Ackerman, Jessica E. ;
Nichols, Anne E. C. ;
Studentsova, Valentina ;
Best, Katherine T. ;
Knapp, Emma ;
Loiselle, Alayna E. .
ELIFE, 2019, 8
[5]   Three-dimensional visualization of extracellular matrix networks during murine development [J].
Acuna, Andrea ;
Drakopoulos, Michael A. ;
Leng, Yue ;
Goergen, Craig J. ;
Calve, Sarah .
DEVELOPMENTAL BIOLOGY, 2018, 435 (02) :122-129
[6]   INITIATION AND EMERGING COMPLEXITY OF THE COLLAGEN NETWORK DURING PRENATAL SKELETAL DEVELOPMENT [J].
Ahmed, S. ;
Nowlan, N. C. .
EUROPEAN CELLS & MATERIALS, 2020, 39 :136-155
[7]   A Graded, Porous Composite of Natural Biopolymers and Octacalcium Phosphate Guides Osteochondral Differentiation of Stem Cells [J].
Amann, Elisabeth ;
Amirall, Amisel ;
Franco, Albina R. ;
Poh, Patrina S. P. ;
Sola Duenas, Francisco J. ;
Fuentes Estevez, Gaston ;
Leonor, Isabel B. ;
Reis, Rui L. ;
van Griensven, Martijn ;
Balmayor, Elizabeth R. .
ADVANCED HEALTHCARE MATERIALS, 2021, 10 (06)
[8]   Engineering of gradient osteochondral tissue: From nature to lab [J].
Ansari, Sana ;
Khorshidi, Sajedeh ;
Karkhaneh, Akbar .
ACTA BIOMATERIALIA, 2019, 87 :41-54
[9]   Scleraxis-lineage cell depletion improves tendon healing and disrupts adult tendon homeostasis [J].
Best, Katherine T. ;
Korcari, Antonion ;
Mora, Keshia E. ;
Nichols, Anne Ec ;
Muscat, Samantha N. ;
Knapp, Emma ;
Buckley, Mark R. ;
Loiselle, Alayna E. .
ELIFE, 2021, 10 :1-64
[10]   NF-κB activation persists into the remodeling phase of tendon healing and promotes myofibroblast survival [J].
Best, Katherine T. ;
Nichols, Anne E. C. ;
Knapp, Emma ;
Hammert, Warren C. ;
Ketonis, Constantinos ;
Jonason, Jennifer H. ;
Awad, Hani A. ;
Loiselle, Alayna E. .
SCIENCE SIGNALING, 2020, 13 (658)