共 38 条
Diffusion-based generative AI for exploring transition states from 2D molecular graphs
被引:9
|作者:
Kim, Seonghwan
[1
]
Woo, Jeheon
[1
]
Kim, Woo Youn
[1
,2
]
机构:
[1] Korea Adv Inst Sci & Technol, Dept Chem, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, AI Inst, 291 Daehak Ro, Daejeon 34141, South Korea
基金:
新加坡国家研究基金会;
关键词:
DENSITY-FUNCTIONAL THEORY;
NUDGED ELASTIC BAND;
REACTION-MECHANISM;
HYDROGEN-PEROXIDE;
EXPLORATION;
PREDICTION;
ENERGETICS;
GEOMETRIES;
REDUCTION;
KINETICS;
D O I:
10.1038/s41467-023-44629-6
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The exploration of transition state (TS) geometries is crucial for elucidating chemical reaction mechanisms and modeling their kinetics. Recently, machine learning (ML) models have shown remarkable performance for prediction of TS geometries. However, they require 3D conformations of reactants and products often with their appropriate orientations as input, which demands substantial efforts and computational cost. Here, we propose a generative approach based on the stochastic diffusion method, namely TSDiff, for prediction of TS geometries just from 2D molecular graphs. TSDiff outperforms the existing ML models with 3D geometries in terms of both accuracy and efficiency. Moreover, it enables to sample various TS conformations, because it learns the distribution of TS geometries for diverse reactions in training. Thus, TSDiff finds more favorable reaction pathways with lower barrier heights than those in the reference database. These results demonstrate that TSDiff shows promising potential for an efficient and reliable TS exploration. The exploration of transition state (TS) geometries is crucial for elucidating chemical reaction mechanisms and modelling their kinetics. Here, authors propose a generative AI approach to predict TS geometries just from 2D molecular graphs of a reaction.
引用
收藏
页数:12
相关论文