Leveraging Knowledge and Reinforcement Learning for Enhanced Reliability of Language Models

被引:1
|
作者
Tyagi, Nancy [1 ]
Sarkar, Surjodeep [1 ]
Gaur, Manas [1 ]
机构
[1] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA
来源
PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023 | 2023年
关键词
Natural Language Processing; Language Models; Ensemble; Reinforcement Learning; Knowledge Infusion; Reliability;
D O I
10.1145/3583780.3615273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Natural Language Processing (NLP) community has been using crowd-sourcing techniques to create benchmark datasets such as General Language Understanding and Evaluation (GLUE) for training modern Language Models (LMs) such as BERT. GLUE tasks measure the reliability scores using inter-annotator metrics - Cohen's Kappa (kappa). However, the reliability aspect of LMs has often been overlooked. To counter this problem, we explore a knowledge-guided LM ensembling approach that leverages reinforcement learning to integrate knowledge from ConceptNet and Wikipedia as knowledge graph embeddings. This approach mimics human annotators resorting to external knowledge to compensate for information deficits in the datasets. Across nine GLUE datasets, our research shows that ensembling strengthens reliability and accuracy scores, outperforming state-of-the-art.
引用
收藏
页码:4320 / 4324
页数:5
相关论文
共 50 条
  • [21] Leveraging Language Models for Inpatient Diagnosis Coding
    Suvirat, Kerdkiat
    Tanasanchonnakul, Detphop
    Chairat, Sawrawit
    Chaichulee, Sitthichok
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [22] Leveraging Demonstrations for Reinforcement Recommendation Reasoning over Knowledge Graphs
    Zhao, Kangzhi
    Wang, Xiting
    Zhang, Yuren
    Zhao, Li
    Liu, Zheng
    Xing, Chunxiao
    Xie, Xing
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 239 - 248
  • [23] Optimizing Sentiment Analysis on Twitter: Leveraging Hybrid Deep Learning Models for Enhanced Efficiency
    Ashok, Gadde
    Ruthvik, N.
    Jeyakumar, G.
    DISTRIBUTED COMPUTING AND INTELLIGENT TECHNOLOGY, ICDCIT 2024, 2024, 14501 : 179 - 192
  • [24] Leveraging Deep Reinforcement Learning for Traffic Engineering: A Survey
    Xiao, Yang
    Liu, Jun
    Wu, Jiawei
    Ansari, Nirwan
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (04): : 2064 - 2097
  • [25] Leveraging transfer learning in reinforcement learning to tackle competitive influence maximization
    Khurshed Ali
    Chih-Yu Wang
    Yi-Shin Chen
    Knowledge and Information Systems, 2022, 64 : 2059 - 2090
  • [26] Leveraging transfer learning in reinforcement learning to tackle competitive influence maximization
    Ali, Khurshed
    Wang, Chih-Yu
    Chen, Yi-Shin
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (08) : 2059 - 2090
  • [27] Bayesian reinforcement learning reliability analysis
    Zhou, Tong
    Guo, Tong
    Dang, Chao
    Beer, Michael
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 424
  • [28] Integrating reinforcement learning and large language models for crop production process management optimization and control through a new knowledge-based deep learning paradigm
    Chen, Dong
    Huang, Yanbo
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2025, 232
  • [29] Integrating large language models, reinforcement learning, and machine learning for intelligent indoor thermal comfort regulation
    Liu, Deli
    Ling, Feixiong
    Zhou, Xiaoping
    Li, Yu
    ARCHITECTURAL SCIENCE REVIEW, 2025,
  • [30] Digital Twin Enhanced Federated Reinforcement Learning With Lightweight Knowledge Distillation in Mobile Networks
    Zhou, Xiaokang
    Zheng, Xuzhe
    Cui, Xuesong
    Shi, Jiashuai
    Liang, Wei
    Yan, Zheng
    Yang, Laurence T.
    Shimizu, Shohei
    Wang, Kevin I-Kai
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (10) : 3191 - 3211