A biosensor based on nanocomposite of g-C3N4 and polyaniline for detection of fentanyl as a doping agent in sports

被引:4
|
作者
Hu, Guangyi [1 ]
Li, Haixia [2 ]
Liu, Fei [1 ]
机构
[1] Hebei Petr Univ Technol, Dept Sports Hlth & Art Educ, 2 Xueyuan Rd, Chengde, Peoples R China
[2] Harbin Inst Phys Educ, Winter Olymp Coll, Harbin 150001, Heilongjiang, Peoples R China
关键词
Polyaniline; Nanocomposite; Fentanyl; Electrochemical sensor; Urine sample; ELECTROCHEMICAL SENSOR; MASS-SPECTROMETRY; HUMAN PLASMA; HUMAN URINE; PHARMACOKINETICS; IDENTIFICATION; PERFORMANCE; METABOLITES;
D O I
10.1016/j.aej.2023.12.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Significant ethical and health concerns have been brought up recently by the illegitimate use of highly strong synthetic opioids, including fentanyl, as doping agents in sports. Therefore, the requirement for quick and accurate detection techniques to spot illicit drugs in athletes has never been more important. Our study presents a novel biosensor for the sensitive detection of fentanyl based on a nanocomposite of polyaniline (PANI) and a glassy carbon electrode modified with g-C3N4, which is the first of its kind. The g-C3N4-PANI nanocomposite's successful synthesis was confirmed by structural investigations performed using SEM, XRD, and FT-IR. Studies on the electrochemical effects of g-C3N4 and PANI using cyclic voltammetry (CV) and amperometry revealed that the g-C3N4-PANI hybrid composite enhanced the sensitivity, selectivity, stability, and accuracy of fentanyl measurement. With a sensitivity of 0.45445 mu A/mu M, the electrochemical measurements revealed a broad and consistent linear range spanning from 10 to 920 mu M. The detection threshold was established at 0.006 mu M. Additionally, its performance was assessed using several real -samples made from athlete pee. The findings displayed satisfactory recovery values ranging from 90.00% to 98.00% and low relative standard deviation values (less than 4.74%) and demonstrated the g-C3N4/PANI nanocomposite-based biosensor has the potential to be an effective anti -doping control tool, opening the door for its practical use in maintaining the fairness and safety of competitive sports. The analysis of the nanocomposite showed that the combination of PANI and g-C3N4 resulted in a material with enhanced electrochemical properties, which contributed to the high performance of the biosensor.
引用
收藏
页码:515 / 523
页数:9
相关论文
共 50 条
  • [1] An electrochemical sensor based on Pt/g-C3N4/polyaniline nanocomposite for detection of Hg2+
    Mahmoudian, M. R.
    Alias, Y.
    Woi, Pei Meng
    Yousefi, R.
    Basirun, W. J.
    ADVANCED POWDER TECHNOLOGY, 2020, 31 (08) : 3372 - 3380
  • [2] g-C3N4/MWCNT nanocomposite based electrochemical sensor for hydrogen peroxide detection
    Shukla S.
    Prakash Ojha R.
    Ji G.
    Prakash R.
    Materials Today: Proceedings, 2023, 80 : 183 - 187
  • [3] Fabrication of g-C3N4/NiO heterostructured nanocomposite modified glassy carbon electrode for quercetin biosensor
    Selvarajan, S.
    Suganthi, A.
    Rajarajan, M.
    ULTRASONICS SONOCHEMISTRY, 2018, 41 : 651 - 660
  • [4] Polyaniline/g-C3N4 composites as novel media for anticorrosion coatings
    Zuo, Shixiang
    Chen, Yao
    Liu, Wenjie
    Yao, Chao
    Li, Yingruo
    Ma, Jiangquan
    Kong, Yong
    Mao, Huihui
    Li, Zhongyu
    Fu, Yongsheng
    JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2017, 14 (06): : 1307 - 1314
  • [5] Synthesis of ZnO/g-C3N4 Nanocomposite and Its Electrochemical Application in Hydrogen Peroxide Detection
    Hui Liu
    Zhang, Yu
    Dong, Yong Ping
    Chu, Xiang Feng
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2021, 57 (07) : 808 - 815
  • [6] Sensing Properties of g-C3N4/Au Nanocomposite for Organic Vapor Detection
    Nasri, Atefeh
    Jaleh, Babak
    Daneshnazar, Milad
    Varma, Rajender S.
    BIOSENSORS-BASEL, 2023, 13 (03):
  • [7] Zirconium Phosphate Supported on g-C3N4 Nanocomposite for Sensitive Detection of Nitrite
    Sriram, Balasubramanian
    Baby, Jeena N.
    Hsu, Yung-Fu
    Wang, Sea-Fue
    George, Mary
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (08)
  • [8] Sunlight removal of diclofenac using g-C3N4, g-C3N4/Cl, g-C3N4/Nb2O5 and g-C3N4/TiO2 photocatalysts
    Batista, Jose Andre Ferreira
    Mendes, Julia
    Moretto, Wesley Escouto
    Quadro, Maurizio Silveira
    dos Santos, Joao Henrique Zimnoch
    de Escobar, Cicero Coelho
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (03):
  • [9] CeO2/g-C3N4 nanocomposite: A perspective for electrochemical sensing of anti-depressant drug
    Ansari, S.
    Ansari, M. Shahnawaze
    Devnani, H.
    Satsangee, S. P.
    Jain, R.
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 273 : 1226 - 1236
  • [10] The research of lead ion detection based on rGO/g-C3N4 modified glassy carbon electrode
    Fu, Rui
    Yu, Ping
    Wang, Min
    Sun, Jie
    Chen, Da
    Jin, Chongyue
    Li, Zhilin
    MICROCHEMICAL JOURNAL, 2020, 157